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We must be careful not to confuse data with the
abstractions we use to analyze them.
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Preface

Intended Audience

This text is intended for juniors, seniors, or beginning graduate students in statistics,
mathematics, natural sciences, and engineering as well as for adequately prepared
students in the social sciences and economics. A year of calculus, including Taylor
Series and multivariable calculus, and an introductory course in linear algebra are
prerequisites.

This Book’s Obijectives

This book reflects my view of what a first, and for many students a last, course in
statistics should be. Such a course should include some traditional topics in mathe-
matical statistics (such as methods based on likelihood), topics in descriptive statistics
and data analysis with special attention to graphical displays, aspects of experimental
design, and realistic applications of some complexity. It should also reflect the inte-
gral role played by computers in statistics. These themes, properly interwoven, can
give students a view of the nature of modern statistics. The alternative of teaching
two separate courses, one on theory and one on data analysis, seems to me artificial.
Furthermore, many students take only one course in statistics and do not have time
for two or more.

Analysis of Data and the Practice
of Statistics

In order to draw the above themes together, I have endeavored to write a book closely
tied to the practice of statistics. It is in the analysis of real data that one sees the roles
played by both formal theory and informal data analytic methods. I have organized
this book around various kinds of problems that entail the use of statistical methods
and have included many real examples to motivate and introduce the theory. Among

Xi
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the advantages of such an approach are that theoretical constructs are presented in
meaningful contexts, that they are gradually supplemented and reinforced, and that
they are integrated with more informal methods. This is, I think, a fitting approach
to statistics, the historical development of which has been spurred on primarily by
practical needs rather than by abstract or aesthetic considerations. At the same time,
I have not shied away from using the mathematics that the students are supposed to
know.

The Third Edition

Eighteen years have passed since the first edition of this book was published and
eleven years since the second. Although the basic intent and stucture of the book
have not changed, the new editions reflect developments in the discipline of statistics,
primarily the computational revolution.

The most significant change in this edition is the treatment of Bayesian infer-
ence. I moved the material from the last chapter, a point that was never reached by
many instructors, and integrated it into earlier chapters. Bayesian inference is now
first previewed in Chapter 3, in the context of conditional distributions. It is then
placed side-by-side with frequentist methods in Chapter 8, where it complements the
material on maximum likelihood estimation very naturally. The introductory section
on hypothesis testing in Chapter 9 now begins with a Bayesian formulation before
moving on to the Neyman-Pearson paradigm. One advantage of this is that the funda-
mental importance of the likelihood ratio is now much more apparent. In applications,
I stress uninformative priors and show the similarity of the qualitative conclusions
that would be reached by frequentist and Bayesian methods.

Other new material includes the use of examples from genomics and financial
statistics in the probability chapters. In addition to its value as topically relevant, this
material naturally reinforces basic concepts. For example, the material on copulas
underscores the relationships of marginal and joint distributions. Other changes in-
clude the introduction of scatterplots and correlation coefficients within the context
of exploratory data analysis in Chapter 10 and a brief introduction to nonparametric
smoothing via local linear least squares in Chapter 14. There are nearly 100 new
problems, mainly in Chapters 7—14, including several new data sets. Some of the data
sets are sufficiently substantial to be the basis for computer lab assignments. I also
elucidated many passages that were obscure in earlier editions.

Brief Outline

A complete outline can be found, of course, in the Table of Contents. Here I will just
highlight some points and indicate various curricular options for the instructor.

The first six chapters contain an introduction to probability theory, particularly
those aspects most relevant to statistics. Chapter 1 introduces the basic ingredients
of probability theory and elementary combinatorial methods from a non measure
theoretic point of view. In this and the other probability chapters, I tried to use real-
world examples rather than balls and urns whenever possible.
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The concept of a random variable is introduced in Chapter 2. I chose to discuss
discrete and continuous random variables together, instead of putting off the contin-
uous case until later. Several common distributions are introduced. An advantage of
this approach is that it provides something to work with and develop in later chapters.

Chapter 3 continues the treatment of random variables by going into joint dis-
tributions. The instructor may wish to skip lightly over Jacobians; this can be done
with little loss of continuity, since they are rarely used in the rest of the book. The
material in Section 3.7 on extrema and order statistics can be omitted if the instructor
is willing to do a little backtracking later.

Expectation, variance, covariance, conditional expectation, and moment-gene-
rating functions are taken up in Chapter 4. The instructor may wish to pass lightly
over conditional expectation and prediction, especially if he or she does not plan to
cover sufficiency later. The last section of this chapter introduces the § method, or
the method of propagation of error. This method is used several times in the statistics
chapters.

The law of large numbers and the central limit theorem are proved in Chapter 5
under fairly strong assumptions.

Chapter 6 is a compendium of the common distributions related to the normal and
sampling distributions of statistics computed from the usual normal random sample.
I don’t spend a lot of time on this material here but do develop the necessary facts
as they are needed in the statistics chapters. It is useful for students to have these
distributions collected in one place.

Chapter 7 is on survey sampling, an unconventional, but in some ways natural,
beginning to the study of statistics. Survey sampling is an area of statistics with
which most students have some vague familiarity, and a set of fairly specific, concrete
statistical problems can be naturally posed. It is a context in which, historically, many
important statistical concepts have developed, and it can be used as a vehicle for
introducing concepts and techniques that are developed further in later chapters, for
example:

* Theidea of an estimate as arandom variable with an associated sampling distribution

* The concepts of bias, standard error, and mean squared error

» Confidence intervals and the application of the central limit theorem

* An exposure to notions of experimental design via the study of stratified estimates
and the concept of relative efficiency

* Calculation of expectations, variances, and covariances

One of the unattractive aspects of survey sampling is that the calculations are rather
grubby. However, there is a certain virtue in this grubbiness, and students are given
practice in such calculations. The instructor has quite a lot of flexibility as to how
deeply to cover the concepts in this chapter. The sections on ratio estimation and
stratification are optional and can be skipped entirely or returned to at a later time
without loss of continuity.

Chapter 8 is concerned with parameter estimation, a subject that is motivated
and illustrated by the problem of fitting probability laws to data. The method of
moments, the method of maximum likelihood, and Bayesian inference are developed.
The concept of efficiency is introduced, and the Cramér-Rao Inequality is proved.
Section 8.8 introduces the concept of sufficiency and some of its ramifications. The
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material on the Cramér-Rao lower bound and on sufficiency can be skipped; to my
mind, the importance of sufficiency is usually overstated. Section 8.7.1 (the negative
binomial distribution) can also be skipped.

Chapter 9 is an introduction to hypothesis testing with particular application
to testing for goodness of fit, which ties in with Chapter 8. (This subject is further
developed in Chapter 11.) Informal, graphical methods are presented here as well.
Several of the last sections of this chapter can be skipped if the instructor is pressed
for time. These include Section 9.6 (the Poisson dispersion test), Section 9.7 (hanging
rootograms), and Section 9.9 (tests for normality).

A variety of descriptive methods are introduced in Chapter 10. Many of these
techniques are used in later chapters. The importance of graphical procedures is
stressed, and notions of robustness are introduced. The placement of a chapter on
descriptive methods this late in a book may seem strange. I chose to do so be-
cause descriptive procedures usually have a stochastic side and, having been through
the three chapters preceding this one, students are by now better equipped to study the
statistical behavior of various summary statistics (for example, a confidence interval
for the median). When I teach the course, I introduce some of this material earlier.
For example, I have students make boxplots and histograms from samples drawn in
labs on survey sampling. If the instructor wishes, the material on survival and hazard
functions can be skipped.

Classical and nonparametric methods for two-sample problems are introduced
in Chapter 11. The concepts of hypothesis testing, first introduced in Chapter 9,
are further developed. The chapter concludes with some discussion of experimental
design and the interpretation of observational studies.

The first eleven chapters are the heart of an introductory course; the theoretical
constructs of estimation and hypothesis testing have been developed, graphical and
descriptive methods have been introduced, and aspects of experimental design have
been discussed.

The instructor has much more freedom in selecting material from Chapters 12
through 14. In particular, it is not necessary to proceed through these chapters in the
order in which they are presented.

Chapter 12 treats the one-way and two-way layouts via analysis of variance and
nonparametric techniques. The problem of multiple comparisons, first introduced at
the end of Chapter 11, is discussed.

Chapter 13 is a rather brief treatment of the analysis of categorical data. Likeli-
hood ratio tests are developed for homogeneity and independence. McNemar’s test
is presented and finally, estimation of the odds ratio is motivated by a discussion of
prospective and retrospective studies.

Chapter 14 concerns linear least squares. Simple linear regression is developed
first and is followed by a more general treatment using linear algebra. I chose to
employ matrix algebra but keep the level of the discussion as simple and concrete as
possible, not going beyond concepts typically taught in an introductory one-quarter
course. In particular, I did not develop a geometric analysis of the general linear model
or make any attempt to unify regression and analysis of variance. Throughout this
chapter, theoretical results are balanced by more qualitative data analytic procedures
based on analysis of residuals. At the end of the chapter, I introduce nonparametric
regression via local linear least squares.
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Computer Use and Problem Solving

Computation is an integral part of contemporary statistics. It is essential for data
analysis and can be an aid to clarifying basic concepts. My students use the open-
source package R, which they can install on their own computers. Other packages
could be used as well but I do not discuss any particular programs in the text. The
data in the text are available on the CD that is bound in the U.S. edition or can be
downloaded from www.thomsonedu.com/statistics.

This book contains a large number of problems, ranging from routine reinforce-
ment of basic concepts to some that students will find quite difficult. I think that
problem solving, especially of nonroutine problems, is very important.

Acknowledgments
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to the first edition. Earlier versions were used in courses taught by Richard Olshen,
Yosi Rinnot, Donald Ylvisaker, Len Haff, and David Lane, who made many helpful
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reviewers provided useful suggestions: Rollin Brant, University of Toronto; George
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CHAPTER T

Probability

Introduction

The idea of probability, chance, or randomness is quite old, whereas its rigorous
axiomatization in mathematical terms occurred relatively recently. Many of the ideas
of probability theory originated in the study of games of chance. In this century, the
mathematical theory of probability has been applied to a wide variety of phenomena;
the following are some representative examples:

* Probability theory has been used in genetics as a model for mutations and ensuing
natural variability, and plays a central role in bioinformatics.

* The kinetic theory of gases has an important probabilistic component.

* In designing and analyzing computer operating systems, the lengths of various
queues in the system are modeled as random phenomena.

» There are highly developed theories that treat noise in electrical devices and com-
munication systems as random processes.

* Many models of atmospheric turbulence use concepts of probability theory.

* In operations research, the demands on inventories of goods are often modeled as
random.

 Actuarial science, which is used by insurance companies, relies heavily on the tools
of probability theory.

* Probability theory is used to study complex systems and improve their reliability,
such as in modern commercial or military aircraft.

 Probability theory is a cornerstone of the theory of finance.

The list could go on and on.

This book develops the basic ideas of probability and statistics. The first part
explores the theory of probability as a mathematical model for chance phenomena.
The second part of the book is about statistics, which is essentially concerned with

1
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1.2

EXAMPLE A

EXAMPLE B

EXAMPLE C

procedures for analyzing data, especially data that in some vague sense have a random
character. To comprehend the theory of statistics, you must have a sound background
in probability.

Sample Spaces

Probability theory is concerned with situations in which the outcomes occur randomly.
Generically, such situations are called experiments, and the set of all possible outcomes
is the sample space corresponding to an experiment. The sample space is denoted by
2, and an element of Q2 is denoted by w. The following are some examples.

Driving to work, a commuter passes through a sequence of three intersections with
traffic lights. At each light, she either stops, s, or continues, c¢. The sample space is
the set of all possible outcomes:

Q = {ccc, ccs, css, csc, s8S, s8¢, scc, SCs}

where csc, for example, denotes the outcome that the commuter continues through
the first light, stops at the second light, and continues through the third light. [ ]

The number of jobs in a print queue of a mainframe computer may be modeled as
random. Here the sample space can be taken as

Q=1{0,1,2,3,...)

that is, all the nonnegative integers. In practice, there is probably an upper limit, N,
on how large the print queue can be, so instead the sample space might be defined as

Q=1{0,1,2,..., N} [ |

Earthquakes exhibit very erratic behavior, which is sometimes modeled as random.
For example, the length of time between successive earthquakes in a particular region
that are greater in magnitude than a given threshold may be regarded as an experiment.
Here 2 is the set of all nonnegative real numbers:

Q={t|t >0} [ ]

We are often interested in particular subsets of €2, which in probability language
are called events. In Example A, the event that the commuter stops at the first light is
the subset of 2 denoted by

A = {sss, 55¢, scc, scs}
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(Events, or subsets, are usually denoted by italic uppercase letters.) In Example B,
the event that there are fewer than five jobs in the print queue can be denoted by

A=10,1,2,3,4)

The algebra of set theory carries over directly into probability theory. The union
of two events, A and B, is the event C that either A occurs or B occurs or both occur:
C = A U B. For example, if A is the event that the commuter stops at the first light
(listed before), and if B is the event that she stops at the third light,

B = {sss, scs, ccs, css}

then C is the event that she stops at the first light or stops at the third light and consists
of the outcomes that are in A or in B or in both:

C = {sss, ssc, scc, scs, ccs, css}

The intersection of two events, C = AN B, is the event that both A and B occur.
If A and B are as given previously, then C is the event that the commuter stops at
the first light and stops at the third light and thus consists of those outcomes that are
common to both A and B:

C = {sss, scs}

The complement of an event, A, is the event that A does not occur and thus
consists of all those elements in the sample space that are not in A. The complement
of the event that the commuter stops at the first light is the event that she continues at
the first light:

A = {cce, ccs, css, csc}

You may recall from previous exposure to set theory a rather mysterious set called
the empty set, usually denoted by . The empty set is the set with no elements; it
is the event with no outcomes. For example, if A is the event that the commuter
stops at the first light and C is the event that she continues through all three lights,
C = {ccc}, then A and C have no outcomes in common, and we can write

ANC =9

In such cases, A and C are said to be disjoint.

Venn diagrams, such as those in Figure 1.1, are often a useful tool for visualizing
set operations.

The following are some laws of set theory.

Commutative Laws:

AUB=BUA
ANB=BNA

Associative Laws:

(AUB)UC=AU(BUC)
(ANB)NC=AN(BNC)
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Distributive Laws:

(AUB)NC =(ANC)U(BNC)
(ANB)UC =(AUC)N(BUC)

Of these, the distributive laws are the least intuitive, and you may find it instructive
to illustrate them with Venn diagrams.

AUB ANB

FIGURE 1.1 Venn diagrams of AU B and AN B.

Probability Measures

A probability measure on 2 is a function P from subsets of 2 to the real numbers
that satisfies the following axioms:

1. P(Q) = 1.
2. If A C Q, then P(A) > 0.
3. If A and A, are disjoint, then

P(A;UA) = P(A) + P(Ay).

More generally, if A, As, ..., A,, ... are mutually disjoint, then

(02) L

The first two axioms are obviously desirable. Since 2 consists of all possible out-
comes, P(2) = 1. The second axiom simply states that a probability is nonnegative.
The third axiom states that if A and B are disjoint—that is, have no outcomes in
common—then P(A U B) = P(A)+ P(B) and also that this property extends to
limits. For example, the probability that the print queue contains either one or three
jobs is equal to the probability that it contains one plus the probability that it contains
three.

The following properties of probability measures are consequences of the axioms.

Property A P(A°) =1 — P(A). This property follows since A and A€ are disjoint
with A U A° = Q and thus, by the first and third axioms, P(A) + P(A°) = 1. In
words, this property says that the probability that an event does not occur equals one
minus the probability that it does occur.

Property B P () = 0. This property follows from Property A since § = Q€. In
words, this says that the probability that there is no outcome at all is zero.
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Property C If A C B, then P(A) < P(B). This property states that if B occurs
whenever A occurs, then P(A) < P(B). For example, if whenever it rains (A) it is
cloudy (B), then the probability that it rains is less than or equal to the probability
that it is cloudy. Formally, it can be proved as follows: B can be expressed as the
union of two disjoint sets:

B =AU (BN A"
Then, from the third axiom,
P(B) = P(A)+ P(BN A
and thus
P(A) = P(B)— P(BNA°) < P(B)
Property D Addition Law P(AU B) = P(A) + P(B) — P(A N B). This property
is easy to see from the Venn diagram in Figure 1.2. If P(A) and P(B) are added

together, P(A N B) is counted twice. To prove it, we decompose A U B into three
disjoint subsets, as shown in Figure 1.2:

C=ANB"
D=ANBAB
E=A°NB

FIGURE 1.2 Venn diagram illustrating the addition law.

We then have, from the third axiom,
P(AUB)=P(C)+ P(D)+ P(E)

Also, A = C U D, and C and D are disjoint; so P(A) = P(C) + P(D). Similarly,
P(B) = P(D) + P(E). Putting these results together, we see that

P(A)+ P(B) = P(C) + P(E) +2P(D)
— P(AUB) + P(D)

or

P(AUB) = P(A)+ P(B) — P(D)
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EXAMPLE B

1.4

EXAMPLE A

Suppose that a fair coin is thrown twice. Let A denote the event of heads on the first
toss, and let B denote the event of heads on the second toss. The sample space is

Q = {hh, ht, th, tt}

We assume that each elementary outcome in €2 is equally likely and has probability
3—‘. C = AU B is the event that heads comes up on the first toss or on the second toss.
Clearly, P(C) # P(A) + P(B) = 1. Rather, since A N B is the event that heads
comes up on the first toss and on the second toss,

P(C) = P(A)+ P(B)— P(ANB) =5+ .5—.25=75 n

An article in the Los Angeles Times (August 24, 1987) discussed the statistical risks
of AIDS infection:

Several studies of sexual partners of people infected with the virus show that
a single act of unprotected vaginal intercourse has a surprisingly low risk of
infecting the uninfected partner—perhaps one in 100 to one in 1000. For an
average, consider the risk to be one in 500. If there are 100 acts of intercourse
with an infected partner, the odds of infection increase to one in five.

Statistically, 500 acts of intercourse with one infected partner or 100 acts
with five partners lead to a 100% probability of infection (statistically, not
necessarily in reality).

Following this reasoning, 1000 acts of intercourse with one infected partner would
lead to a probability of infection equal to 2 (statistically, but not necessarily in reality).
To see the flaw in the reasoning that leads to this conclusion, consider two acts of
intercourse. Let A; denote the event that infection occurs on the first act and let A,
denote the event that infection occurs on the second act. Then the event that infection
occurs is B = A; U A, and

2
P(B)=P(Al)+P(A2)_P(A1mA2)fP(Al)“‘P(AZ):% u

Computing Probabilities:
Counting Methods

Probabilities are especially easy to compute for finite sample spaces. Suppose that
Q = {wy, wy,...,wy} and that P(w;) = p;. To find the probability of an event A,
we simply add the probabilities of the w; that constitute A.

Suppose that a fair coin is thrown twice and the sequence of heads and tails is recorded.
The sample space is

Q = {hh, ht, th, tt}
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As in Example A of the previous section, we assume that each outcome in €2 has
probability .25. Let A denote the event that at least one head is thrown. Then A =
{hh, ht,th}, and P(A) = .75. [ |

This is a simple example of a fairly common situation. The elements of 2 all
have equal probability; so if there are N elements in €2, each of them has probability
1/N.If A can occur in any of n mutually exclusive ways, then P(A) = n/N, or

number of ways A can occur

P(A) =
total number of outcomes
Note that this formula holds only if all the outcomes are equally likely. In Exam-
ple A, if only the number of heads were recorded, then 2 would be {0, 1, 2}. These
outcomes are not equally likely, and P(A) is not % ]

Simpson’s Paradox

A black urn contains 5 red and 6 green balls, and a white urn contains 3 red and 4
green balls. You are allowed to choose an urn and then choose a ball at random from
the urn. If you choose a red ball, you get a prize. Which urn should you choose to
draw from? If you draw from the black urn, the probability of choosing a red ball is
% = .455 (the number of ways you can draw a red ball divided by the total number
of outcomes). If you choose to draw from the white urn, the probability of choosing
ared ball is % = .429, so you should choose to draw from the black urn.

Now consider another game in which a second black urn has 6 red and 3 green
balls, and a second white urn has 9 red and 5 green balls. If you draw from the black
urn, the probability of a red ball is g = .667, whereas if you choose to draw from the
white urn, the probability is % = .643. So, again you should choose to draw from
the black urn.

In the final game, the contents of the second black urn are added to the first black
urn, and the contents of the second white urn are added to the first white urn. Again,
you can choose which urn to draw from. Which should you choose? Intuition says
choose the black urn, but let’s calculate the probabilities. The black urn now contains
11 red and 9 green balls, so the probability of drawing a red ball from it is % =.55.
The white urn now contains 12 red and 9 green balls, so the probability of drawing ared
ball from it is % = .571. So, you should choose the white urn. This counterintuitive
result is an example of Simpson’s paradox. For an example that occurred in real life,

see Section 11.4.7. For more amusing examples, see Gardner (1976). [ |

In the preceding examples, it was easy to count the number of outcomes and
calculate probabilities. To compute probabilities for more complex situations, we
must develop systematic ways of counting outcomes, which are the subject of the
next two sections.

The Multiplication Principle

The following is a statement of the very useful multiplication principle.
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MULTIPLICATION PRINCIPLE

If one experiment has m outcomes and another experiment has n outcomes, then
there are mn possible outcomes for the two experiments.

Proof
Denote the outcomes of the first experiment by ay, ..., a,, and the outcomes of
the second experiment by by, ..., b,. The outcomes for the two experiments are

the ordered pairs (a;, b;). These pairs can be exhibited as the entries of anm x n
rectangular array, in which the pair (a;, b;) is in the ith row and the jth column.
There are mn entries in this array. [ |

EXAMPLE A Playing cards have 13 face values and 4 suits. There are thus 4 x 13 = 52 face-
value/suit combinations. [ |

EXAMPLE B A class has 12 boys and 18 girls. The teacher selects 1 boy and 1 girl to act as
representatives to the student government. She can do this in any of 12 x 18 = 216
different ways. [ |

EXTENDED MULTIPLICATION PRINCIPLE

If there are p experiments and the first has n; possible outcomes, the second
ny, ..., andthe pthn, possible outcomes, then there are atotal of n; x ny x - x
n, possible outcomes for the p experiments.

Proof

This principle can be proved from the multiplication principle by induction.
We saw that it is true for p =2. Assume that it is true for p = g—that is, that
there are n; x np X --- X n, possible outcomes for the first ¢ experiments. To
complete the proof by induction, we must show that it follows that the prop-
erty holds for p = g 4+ 1. We apply the multiplication principle, regarding

the first g experiments as a single experiment with n; x --- x n, outcomes,
and conclude that there are (n; x --- x n;) X ngq; outcomes for the g + 1
experiments. [ |

EXAMPLE C An8-bitbinary word is a sequence of 8 digits, of which each may be eitheraQora 1.
How many different 8-bit words are there?
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There are two choices for the first bit, two for the second, etc., and thus there are
2Xx2x2x2x2x2x2x2=2%=256

such words. [ |

A DNA molecule is a sequence of four types of nucleotides, denoted by A, G, C, and T.
The molecule can be millions of units long and can thus encode an enormous amount
of information. For example, for a molecule 1 million (10%) units long, there are
419 different possible sequences. This is a staggeringly large number having nearly a
million digits. An amino acid is coded for by a sequence of three nucleotides; there are
43 = 64 different codes, but there are only 20 amino acids since some of them can be
coded for in several ways. A protein molecule is composed of as many as hundreds of
amino acid units, and thus there are an incredibly large number of possible proteins.
For example, there are 20'% different sequences of 100 amino acids. ]

Permutations and Combinations

A permutation is an ordered arrangement of objects. Suppose that from the set
C = {cy,c2,...,c,} we choose r elements and list them in order. How many ways
can we do this? The answer depends on whether we are allowed to duplicate items
in the list. If no duplication is allowed, we are sampling without replacement. If
duplication is allowed, we are sampling with replacement. We can think of the
problem as that of taking labeled balls from an urn. In the first type of sampling, we
are not allowed to put a ball back before choosing the next one, but in the second, we
are. In either case, when we are done choosing, we have a list of r balls ordered in
the sequence in which they were drawn.

The extended multiplication principle can be used to count the number of different
ordered samples possible for a set of n elements. First, suppose that sampling is done
with replacement. The first ball can be chosen in any of n ways, the second in any
of n ways, etc., so that there are n X n x --- x n = n” samples. Next, suppose that
sampling is done without replacement. There are n choices for the first ball, n — 1
choices for the second ball, n — 2 for the third, ..., and n — r 4+ 1 for the rth. We
have just proved the following proposition.

PROPOSITION A

For a set of size n and a sample of size r, there are n” different ordered sam-
ples with replacement and n(n — 1)(n — 2)---(n — r + 1) different ordered
samples without replacement. |

COROLLARY A

The number of orderings of n elements is n(n — 1)(n —2) --- 1 = nl. |
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EXAMPLE B

EXAMPLE C

EXAMPLE D

EXAMPLE E

Probability

How many ways can five children be lined up?
This corresponds to sampling without replacement. According to Corollary A,
there are 5! =5 x 4 x 3 x 2 x 1 = 120 different lines. ]

Suppose that from ten children, five are to be chosen and lined up. How many different
lines are possible?
From Proposition A, there are 10 x 9 x 8 x 7 x 6 = 30,240 different lines. W

In some states, license plates have six characters: three letters followed by three
numbers. How many distinct such plates are possible?
This corresponds to sampling with replacement. There are 26° = 17,576 different

ways to choose the letters and 10° = 1000 ways to choose the numbers. Using
the multiplication principle again, we find there are 17,576 x 1000 = 17,576,000
different plates. [ |

If all sequences of six characters are equally likely, what is the probability that the
license plate for a new car will contain no duplicate letters or numbers?

Call the desired event A; €2 consists of all 17,576,000 possible sequences. Since
these are all equally likely, the probability of A is the ratio of the number of ways
that A can occur to the total number of possible outcomes. There are 26 choices for
the first letter, 25 for the second, 24 for the third, and hence 26 x 25 x 24 = 15,600
ways to choose the letters without duplication (doing so corresponds to sampling
without replacement), and 10 x 9 x 8§ = 720 ways to choose the numbers without
duplication. From the multiplication principle, there are 15,600 x 720 = 11,232,000
nonrepeating sequences. The probability of A is thus

11,232,000

PA)= ———— =.
(A) 17,576,000

Birthday Problem
Suppose that a room contains n people. What is the probability that at least two of
them have a common birthday?

This is a famous problem with a counterintuitive answer. Assume that every day
of the year is equally likely to be a birthday, disregard leap years, and denote by A
the event that at least two people have a common birthday. As is sometimes the case,
finding P (A°) is easier than finding P(A). This is because A can happen in many
ways, whereas A€ is much simpler. There are 365" possible outcomes, and A can
happen in 365 x 364 x --- x (365 —n + 1) ways. Thus,

365 x 364 x ---x (365 —n+1)
365"

P(AS) =
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and
365 x 364 x --- x (365 —n+1)
365"
The following table exhibits the latter probabilities for various values of n:

P(A)=1-—

n P(A)
4 016
16 284
23 507
32 753
40 891
56 988

From the table, we see that if there are only 23 people, the probability of at least one
match exceeds .5. The probabilities in the table are larger than one might intuitively
guess, showing that the coincidence is not unlikely. Try it in your class. [ |

How many people must you ask to have a 50 : 50 chance of finding someone who
shares your birthday?

Suppose that you ask n people; let A denote the event that someone’s birthday is
the same as yours. Again, working with A€ is easier. The total number of outcomes
is 365", and the total number of ways that A° can happen is 364". Thus,

P(AS) = 364"
365"
and
364"
PA)=1-
365"
For the latter probability to be .5, n should be 253, which may seem counterintuitive.

We now shift our attention from counting permutations to counting combina-
tions. Here we are no longer interested in ordered samples, but in the constituents
of the samples regardless of the order in which they were obtained. In particular,
we ask the following question: If r objects are taken from a set of n objects without
replacement and disregarding order, how many different samples are possible? From
the multiplication principle, the number of ordered samples equals the number of
unordered samples multiplied by the number of ways to order each sample. Since the
number of ordered samples is n(n — 1) --- (n —r + 1), and since a sample of size r
can be ordered in r! ways (Corollary A), the number of unordered samples is

nn—1---n—r+1) n!

r! T m=r)r!

This number is also denoted as (;’) We have proved the following proposition.
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PROPOSITION B

The number of unordered samples of r objects selected from n objects without
replacement is ().

The numbers (Z) called the binomial coefficients, occur in the expansion

(a+b)" = Z (Z)akbn—k

k=0

-£()

k=0

In particular,

This latter result can be interpreted as the number of subsets of a set of n objects.
We just add the number of subsets of size O (with the usual convention that
0! = 1), and the number of subsets of size 1, and the number of subsets of
size 2, etc. [ |

Up until 1991, a player of the California state lottery could win the jackpot prize by
choosing the 6 numbers from 1 to 49 that were subsequently chosen at random by
the lottery officials. There are (469) = 13,983,816 possible ways to choose 6 numbers
from 49, and so the probability of winning was about 1 in 14 million. If there were
no winners, the funds thus accumulated were rolled over (carried over) into the next
round of play, producing a bigger jackpot. In 1991, the rules were changed so that
a winner had to correctly select 6 numbers from 1 to 53. Since (5; ) = 22,957,480,
the probability of winning decreased to about 1 in 23 million. Because of the ensuing
rollover, the jackpot accumulated to a record of about $120 million. This produced a
fever of play—people were buying tickets at the rate of between 1 and 2 million per
hour and state revenues burgeoned. [ |

In the practice of quality control, only a fraction of the output of a manufacturing
process is sampled and examined, since it may be too time-consuming and expensive
to examine each item, or because sometimes the testing is destructive. Suppose that
n items are in a lot and a sample of size r is taken. There are (’r’) such samples. Now
suppose that the lot contains k defective items. What is the probability that the sample
contains exactly m defectives?

Clearly, this question is relevant to the efficacy of the sampling scheme, and the
most desirable sample size can be determined by computing such probabilities for
various values of r. Call the event in question A. The probability of A is the number
of ways A can occur divided by the total number of outcomes. To find the number of
ways A can occur, we use the multiplication principle. There are (fl ) ways to choose
the m defective items in the sample from the k defectives in the lot, and there are
(f__:l) ways to choose the r — m nondefective items in the sample from the n — k

nondefectives in the lot. Therefore, A can occur in (,’;) (”_k) ways. Thus, P(A) is the

r—m
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ratio of the number of ways A can occur to the total number of outcomes, or
k n—k
(ﬂl) (I”*m)
0 -
r

P(A) =

Capture/Recapture Method
The so-called capture/recapture method is sometimes used to estimate the size of a
wildlife population. Suppose that 10 animals are captured, tagged, and released. On
a later occasion, 20 animals are captured, and it is found that 4 of them are tagged.
How large is the population?

We assume that there are n animals in the population, of which 10 are tagged.
If the 20 animals captured later are taken in such a way that all (2"0) possible groups
are equally likely (this is a big assumption), then the probability that 4 of them are

tagged is (using the technique of the previous example)
10\ (n—10
G
(20)

Clearly, n cannot be precisely determined from the information at hand, but it can be
estimated. One method of estimation, called maximum likelihood, is to choose that
value of n that makes the observed outcome most probable. (The method of maximum
likelihood is one of the main subjects of a later chapter in this text.) The probability
of the observed outcome as a function of 7 is called the likelihood. Figure 1.3 shows
the likelihood as a function of n; the likelihood is maximized at n = 50.

035

Likelihood

20 30 40 50 60 70 80 90 100

FIGURE 1.3 Likelihood for Example I.

To find the maximum likelihood estimate, suppose that, in general, t animals are
tagged. Then, of a second sample of size m, r tagged animals are recaptured. We
estimate n by the maximizer of the likelihood

()G
()

L,=
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To find the value of n that maximizes L,, consider the ratio of successive terms, which
after some algebra is found to be

L. _ (n=0m—m)
L, _n(n—t—m—l—r)

This ratio is greater than 1, i.e., L, is increasing, if

nmn—t)y(n—m) >nn—t—m-+r)
nz—nm—nt+mt>n2—nt—nm—nr
mt > nr

mt
— >n
-
Thus, L, increases for n < mt/r and decreases for n > mt/r; so the value of n that
maximizes L, is the greatest integer not exceeding mt/r.
Applying this result to the data given previously, we see that the maximum
likelihood estimate of 7 is ’"7’ = @ = 50. This estimate has some intuitive appeal,
as it equates the proportion of tagged animals in the second sample to the proportion

in the population:

Proposition B has the following extension.

PROPOSITION C

The number of ways that n objects can be grouped into r classes with n; in the
ithclass,i =1,...,r,and Y ;_ n; =nis

n n!
nin, -« - n, ni'ny!---n,!

This can be seen by using Proposition B and the multiplication principle. (Note

Proof

that Proposition B is the special case for which r =2.) There are (:1) ways
to choose the objects for the first class. Having done that, there are (";2"1)
ways of choosing the objects for the second class. Continuing in this manner,
there are

n! (n—np)! n—n;y—ny,—---—n,_p)!

ni!(n —ny)! (n —n; —ny)'n,! 0ln,!

choices in all. After cancellation, this yields the desired result. [ |
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A committee of seven members is to be divided into three subcommittees of size
three, two, and two. This can be done in

7 7!
= =210
322 312121

ways. [ |

In how many ways can the set of nucleotides {A, A, G, G, G, G, C, C, C} be arranged
in a sequence of nine letters? Proposition C can be applied by realizing that this
problem can be cast as determining the number of ways that the nine positions in the
sequence can be divided into subgroups of sizes two, four, and three (the locations of
the letters A, G, and C):

9 9!
= —— =1260
243 21413! u

In how many ways can n = 2m people be paired and assigned to m courts for the first
round of a tennis tournament?

In this problem, n; = 2,i = 1, ..., m, and, according to Proposition C, there
are
2m)!
2m
assignments.

One has to be careful with problems such as this one. Suppose we were asked
how many ways 2m people could be arranged in pairs without assigning the pairs to
courts. Since there are m! ways to assign the m pairs to m courts, the preceding result
should be divided by m!, giving

2m)!
ml2m

pairs in all. u

The numbers (, " ) are called multinomial coefficients. They occur in the
expansion i

n
(-x]+x2+"'+xr)nzz< )x’lﬂxgz...x:l,.

niny---nN,

where the sum is over all nonnegative integers ny, n,, ..., n, such that n; + n, +
cee4n, =n.
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1.5 Conditional Probability

We introduce the definition and use of conditional probability with an example. Digi-
talis therapy is often beneficial to patients who have suffered congestive heart failure,
but there is the risk of digitalis intoxication, a serious side effect that is difficult to
diagnose. To improve the chances of a correct diagnosis, the concentration of digitalis
in the blood can be measured. Bellar et al. (1971) conducted a study of the relation
of the concentration of digitalis in the blood to digitalis intoxication in 135 patients.
Their results are simplified slightly in the following table, where this notation is used:

T+ = high blood concentration (positive test)
T — = low blood concentration (negative test)
D+ = toxicity (disease present)

D— = no toxicity (disease absent)
D+ D— | Total
T+ 25 14 39
T— 18 78 96
Total | 43 92 135

Thus, for example, 25 of the 135 patients had a high blood concentration of digitalis
and suffered toxicity.

Assume that the relative frequencies in the study roughly hold in some larger
population of patients. (Making inferences about the frequencies in a large population
from those observed in a small sample is a statistical problem, which will be taken
up in a later chapter of this book.) Converting the frequencies in the preceding table
to proportions (relative to 135), which we will regard as probabilities, we obtain the
following table:

D+ D— Total
T+ 185 .104 .289
T— 133 578 11
Total | 318 .682 | 1.000

From the table, P(T+) = .289 and P(D+) = .318, for example. Now if a doctor
knows that the test was positive (that there was a high blood concentration), what is the
probability of disease (toxicity) given this knowledge? We can restrict our attention
to the first row of the table, and we see that of the 39 patients who had positive tests,
25 suffered from toxicity. We denote the probability that a patient shows toxicity given
that the test is positive by P(D + | T+), which is called the conditional probability
of D+ given T +.

P(D + |T+)—25 = .640
T390
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Equivalently, we can calculate this probability as

P(D+NT+)

P(T+)
185
— =.640
.289

In summary, we see that the unconditional probability of D + is .318, whereas
the conditional probability D + given 7+ is .640. Therefore, knowing that the test is
positive makes toxicity more than twice as likely. What if the test is negative?

578

P(D—- |T—)=——=.848
( | ) 11

P(D+ |T+) =

For comparison, P(D—) = .682. Two other conditional probabilities from this ex-
ample are of interest: The probability of a false positive is P(D — | T+) = .360, and
the probability of a false negative is P(D + |T—) = .187.

In general, we have the following definition.

DEFINITION

Let A and B be two events with P(B) # 0. The conditional probability of A
given B is defined to be
P(AN B)

The idea behind this definition is that if we are given that event B occurred,
the relevant sample space becomes B rather than €2, and conditional probability is a
probability measure on B. In the digitalis example, to find P (D + | T+), we restricted
our attention to the 39 patients who had positive tests. For this new measure to be a
probability measure, it must satisfy the axioms, and this can be shown.

In some situations, P(A | B) and P(B) can be found rather easily, and we can
then find P(A N B).

MULTIPLICATION LAW
Let A and B be events and assume P (B) # 0. Then
P(ANB)=P(A|B)P(B) [ ]

The multiplication law is often useful in finding the probabilities of intersections,
as the following examples illustrate.

An urn contains three red balls and one blue ball. Two balls are selected without
replacement. What is the probability that they are both red?
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Let R, and R, denote the events that a red ball is drawn on the first trial and on
the second trial, respectively. From the multiplication law,

P(Ry N Ry) = P(R)P(Rz| Ry)

P(R,) is clearly %, and if a red ball has been removed on the first trial, there are two
red balls and one blue ball left. Therefore, P(R, | Ry) = % Thus, P(Ry N R,y) =

1
3
|

Suppose that if it is cloudy (B), the probability that it is raining (A) is .3, and that
the probability that it is cloudy is P(B) = .2 The probability that it is cloudy and
raining is

P(ANB) = P(A|B)P(B) = .3 x .2=.06 -

Another useful tool for computing probabilities is provided by the following law.

LAW OF TOTAL PROBABILITY

Let By, B, ..., B, be such that | J!_, B; = Qand B; N B; = @ fori # j, with
P(B;) > 0 for all i. Then, for any event A,

P(A) =Y P(A|B)P(B)
i=l1
Proof

Before going through a formal proof, it is helpful to state the result in words. The
B; are mutually disjoint events whose union is €2. To find the probability of an
event A, we sum the conditional probabilities of A given B;, weighted by P (B;).
Now, for the proof, we first observe that

P(A) = P(ANQ)

_p <Am (UB>>

=P <O(A N B,»))

i=1

=

Since the events A N B; are disjoint,
P (U(A N B,-)) => P(ANB)
i=1 =]

= ZP(AIB,»)P(Bi) n

1=l
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The law of total probability is useful in situations where it is not obvious how to
calculate P(A) directly but in which P(A | B;) and P(B;) are more straightforward,
such as in the following example.

Referring to Example A, what is the probability that a red ball is selected on the
second draw?

The answer may or may not be intuitively obvious—that depends on your in-
tuition. On the one hand, you could argue that it is “clear from symmetry” that
P(R)) = P(Ry) = %. On the other hand, you could say that it is obvious that a red
ball is likely to be selected on the first draw, leaving fewer red balls for the second
draw, so that P(R,) < P(R;). The answer can be derived easily by using the law of
total probability:

P(Ry) = P(Ry| R)P(R,) + P(Rz| B\)P(By)

3 i 1 3
= — X — X — = —
3 4 4 4
where B, denotes the event that a blue ball is drawn on the first trial. [ |

As another example of the use of conditional probability, we consider a model
that has been used for occupational mobility.

Suppose that occupations are grouped into upper (U), middle (M), and lower (L)
levels. U; will denote the event that a father’s occupation is upper-level; U, will
denote the event that a son’s occupation is upper-level, etc. (The subscripts index
generations.) Glass and Hall (1954) compiled the following statistics on occupational
mobility in England and Wales:

‘ U, M, L,
U, 45 48 .07
M, 05 70 25
L, 01 .50 49

Such a table, which is called a matrix of transition probabilities, is to be read in
the following way: If a father is in U, the probability that his son is in U is .45, the
probability that his sonisin M is .48, etc. The table thus gives conditional probabilities:
for example, P(U, | U;) = .45. Examination of the table reveals that there is more
upward mobility from L into M than from M into U. Suppose that of the father’s
generation, 10% are in U, 40% in M, and 50% in L. What is the probability that a
son in the next generation is in U?
Applying the law of total probability, we have

P(Uy) = P(U,|U)PUy) + P(Uy | M) P(My) + P(Uy | L) P(Ly)
= 45 x .10+ .05 x .40 4+ .01 x .50 = .07

P(M;) and P(L,) can be worked out similarly. [ ]
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Continuing with Example D, suppose we ask a different question: If a son has
occupational status U,, what is the probability that his father had occupational status
U,? Compared to the question asked in Example D, this is an “inverse” problem; we
are given an “effect” and are asked to find the probability of a particular “cause.” In
situations like this, Bayes’ rule, which we state shortly, is useful. Before stating the
rule, we will see what it amounts to in this particular case.

We wish to find P (U, | U,). By definition,

PU, NU,)

PU | Uy) = XA

P, | U)PU))
PU, |U)PU,) + P(Uy | M)P(My) + P(Us | L)P(Ly)

Here we used the multiplication law to reexpress the numerator and the law of

total probability to restate the denominator. The value of the numerator is

PU, | U)PU,) = .45 x .10 = .045, and we calculated the denominator in Exam-

ple D to be .07, so we find that P(U, | U,) = .64. In other words, 64% of the sons who

are in upper-level occupations have fathers who were in upper-level occupations.
We now state Bayes’ rule.

BAYES' RULE

Let A and By, ..., B, be events where the B; are disjoint, U;’zl B; = Q, and
P(B;) > 0O for all i. Then

P(A|Bj)P(B))

P(Bj|A) = -

> P(A|B)P(B)

i=1

The proof of Bayes’ rule follows exactly as in the preceding discussion. [ |

Diamond and Forrester (1979) applied Bayes’ rule to the diagnosis of coronary artery
disease. A procedure called cardiac fluoroscopy is used to determine whether there
is calcification of coronary arteries and thereby to diagnose coronary artery disease.
From the test, it can be determined if 0, 1, 2, or 3 coronary arteries are calcified. Let
To, Ty, T», Tz denote these events. Let D+ or D— denote the event that disease is
present or absent, respectively. Diamond and Forrester presented the following table,
based on medical studies:

i P(T;| D+) P(T; 1 D-)
0 42 .96
1 24 .02
2 .20 .02
3 15 .00
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According to Bayes’ rule,

P(T; | D+)P(D+)
P(T; | D+)P(D+) + P(T; | D—)P(D—)
Thus, if the initial probabilities P(D+) and P(D—) are known, the probability that
a patient has coronary artery disease can be calculated.

Let us consider two specific cases. For the first, suppose that a male between
the ages of 30 and 39 suffers from nonanginal chest pain. For such a patient, it is
known from medical statistics that P(D+) = .05. Suppose that the test shows that
no arteries are calcified. From the preceding equation,

42 x .05
42'x 05+ .96 x 95
It is unlikely that the patient has coronary artery disease. On the other hand, suppose
that the test shows that one artery is calcified. Then

24 x .05
24x 05+ .02x 95

Now it is more likely that this patient has coronary artery disease, but by no means
certain.

As a second case, suppose that the patient is a male between ages 50 and 59 who
suffers typical angina. For such a patient, P(D+) = .92. For him, we find that

P(D+|T) =

P(D+|Ty) = 02

P(D+|T) = 39

PD T 42 % 92 e
T 2% .92+ .96 x.08
24 % 92
P(D+|T) = 99

24%x 92+ .02x .08

Comparing the two patients, we see the strong influence of the prior probability,
P(D+). ]

Polygraph tests (lie-detector tests) are often routinely administered to employees
or prospective employees in sensitive positions. Let + denote the event that the
polygraph reading is positive, indicating that the subject is lying; let 7 denote the
event that the subject is telling the truth; and let L denote the event that the subject is
lying. According to studies of polygraph reliability (Gastwirth 1987),

P(H+|L)=.88
from which it follows that P(— | L) = .12 also
P(—|T)=.86

from which it follows that P(+ | 7) = .14. In words, if a person is lying, the prob-
ability that this is detected by the polygraph is .88, whereas if he is telling the truth,
the polygraph indicates that he is telling the truth with probability .86. Now suppose
that polygraphs are routinely administered to screen employees for security reasons,
and that on a particular question the vast majority of subjects have no reason to lie so
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that P(T) = .99, whereas P(L) = .01. A subject produces a positive response on
the polygraph. What is the probability that the polygraph is incorrect and that she is
in fact telling the truth? We can evaluate this probability with Bayes’ rule:

B P(+|T)P(T)

- P(+|T)P(T)+ P(+|L)P(L)

. (.14)(.99)

©(14)(.99) + (.88)(.01)

= .94

P(T |+)

Thus, in screening this population of largely innocent people, 94% of the positive
polygraph readings will be in error. Most of those placed under suspicion because of
the polygraph result will, in fact, be innocent. This example illustrates some of the
dangers in using screening procedures on large populations. ]

Bayes’ rule is the fundamental mathematical ingredient of a subjective, or
“Bayesian,” approach to epistemology, theories of evidence, and theories of learning.
According to this point of view, an individual’s beliefs about the world can be coded
in probabilities. For example, an individual’s belief that it will hail tomorrow can be
represented by a probability P(H). This probability varies from individual to indi-
vidual. In principle, each individual’s probability can be ascertained, or elicited, by
offering him or her a series of bets at different odds.

According to Bayesian theory, our beliefs are modified as we are confronted with
evidence. If, initially, my probability for a hypothesis is P (H), after seeing evidence
E (e.g., aweather forecast), my probability becomes P(H|E). P(E|H) is often easier
to evaluate than P(H |E). In this case, the application of Bayes’ rule gives

P(E|H)P(H)

PUNE) = b Elm P (o) + PEIB) P ()

where H is the event that H does not hold. This point can be illustrated by the
preceding polygraph example. Suppose an investigator is questioning a particular
suspect and that the investigator’s prior opinion that the suspect is telling the truth
is P(T). Then, upon observing a positive polygraph reading, his opinion becomes
P(T|+). Note that different investigators will have different prior probabilities P (T')
for different suspects, and thus different posterior probabilities.

As appealing as this formulation might be, a long line of research has demon-
strated that humans are actually not very good at doing probability calculations in
evaluating evidence. For example, Tversky and Kahneman (1974) presented subjects
with the following question: “If Linda is a 31-year-old single woman who is outspo-
ken on social issues such as disarmament and equal rights, which of the following
statements is more likely to be true?

¢ Linda is bank teller.
e Linda is a bank teller and active in the feminist movement.”

More than 80% of those questioned chose the second statement, despite Property C
of Section 1.3.
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Even highly trained professionals are not good at doing probability calculations,
as illustrated by the following example of Eddy (1982), regarding interpreting the
results from mammogram screening. One hundred physicians were presented with
the following information:

* In the absence of any special information, the probability that a woman (of the age
and health status of this patient) has breast cancer is 1%.

o If the patient has breast cancer, the probability that the radiologist will correctly
diagnose it is 80%.

* If the patient has a benign lesion (no breast cancer), the probability that the radiol-
ogist will incorrectly diagnose it as cancer is 10%.

They were then asked, “What is the probability that a patient with a positive mam-
mogram actually has breast cancer?”

Ninety-five of the 100 physicians estimated the probability to be about 75%. The
correct probability, as given by Bayes’ rule, is 7.5%. (You should check this.) So even
experts radically overestimate the strength of the evidence provided by a positive
outcome on the screening test.

Thus the Bayesian probability calculus does not describe the way people actually
assimilate evidence. Advocates for Bayesian learning theory might assert that the
theory describes the way people “should think.” A softer point of view is that Bayesian
learning theory is a model for learning, and it has the merit of being a simple model
that can be programmed on computers. Probability theory in general, and Bayesian
learning theory in particular, are part of the core of artificial intelligence.

Independence

Intuitively, we would say that two events, A and B, are independent if knowing that
one had occurred gave us no information about whether the other had occurred; that
is, P(A|B) = P(A) and P(B|A) = P(B). Now, if
P(ANB)
P(A)=P(A|B) = ———
P(B)
then
P(ANB) = P(A)P(B)

We will use this last relation as the definition of independence. Note that it is symmetric
in A and in B, and does not require the existence of a conditional probability, that is,
P(B) can be 0.

DEFINITION
A and B are said to be independent events if P(A N B) = P(A)P(B). |

A card is selected randomly from a deck. Let A denote the event that it is an ace
and D the event that it is a diamond. Knowing that the card is an ace gives no
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information about its suit. Checking formally that the events are independent, we
have P(A) = & = .5 and P(D) = 1. Also, AN D is the event that the card is the ace
of diamonds and P(A N D) = 4. Since P(A)P(D) = (;) x (75) = =5, the events
are in fact independent. u

A system is designed so that it fails only if a unit and a backup unit both fail. Assuming
that these failures are independent and that each unit fails with probability p, the
system fails with probability p?. If, for example, the probability that any unit fails
during a given year is .1, then the probability that the system fails is .01, which
represents a considerable improvement in reliability. [ |

Things become more complicated when we consider more than two events. For
example, suppose we know that events A, B, and C are pairwise independent (any
two are independent). We would like to be able to say that they are all independent
based on the assumption that knowing something about two of the events does not tell
us anything about the third, for example, P(C | AN B) = P(C). But as the following
example shows, pairwise independence does not guarantee mutual independence.

A fair coin is tossed twice. Let A denote the event of heads on the first toss, B the
event of heads on the second toss, and C the event that exactly one head is thrown. A
and B are clearly independent, and P(A) = P(B) = P(C) = .5. To see that A and
C are independent, we observe that P(C | A) = .5. But

P(ANBNC)=0%# P(A)P(B)P(C) ]

To encompass situations such as that in Example C, we define a collection
of events, A, A,, ..., A,, to be mutually independent if for any subcollection,
A, .. AL,

P(A,N---NA;,)=P(A;,) --P(A;,)

We return to Example B of Section 1.3 (infectivity of AIDS). Suppose that virus
transmissions in 500 acts of intercourse are mutually independent events and that
the probability of transmission in any one act is 1/500. Under this model, what is the
probability of infection? It is easier to first find the probability of the complement

of this event. Let Cy, C,, ..., Csy denote the events that virus transmission does not
occur during encounters 1, 2, ..., 500. Then the probability of no infection is
1\
P(CiNnCy,N---NC =(1—— =.37
(G, 2 500) ( 500)

so the probability of infection is 1 — .37 = .63, not 1, which is the answer produced
by incorrectly adding probabilities. ]
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Consider a circuit with three relays (Figure 1.4). Let A; denote the event that the ith
relay works, and assume that P(A;) = p and that the relays are mutually independent.
If F denotes the event that current flows through the circuit, then F = A3 U (A1 N A»)
and, from the addition law and the assumption of independence,

P(F) = P(A3) + P(A; N Ay) — P(A\NAyNA3) = p+ p* — p° ]

FIGURE 1.4 Circuit with three relays.

Suppose that a system consists of components connected in a series, so the system
fails if any one component fails. If there are n mutually independent components and
each fails with probability p, what is the probability that the system will fail?

It is easier to find the probability of the complement of this event; the system
works if and only if all the components work, and this situation has probability
(1 — p)". The probability that the system fails is then 1 — (1 — p)". For example, if
n = 10 and p = .05, the probability that the system works is only .95!° = .60, and
the probability that the system fails is .40.

Suppose, instead, that the components are connected in parallel, so the system
fails only when all components fail. In this case, the probability that the system fails
is only .05 = 9.8 x 10714, [ ]

Calculations like those in Example F are made in reliability studies for sys-
tems consisting of quite complicated networks of components. The absolutely crucial
assumption is that the components are independent of one another. Theoretical studies
of the reliability of nuclear power plants have been criticized on the grounds that they
incorrectly assume independence of the components.

Matching DNA Fragments
Fragments of DNA are often compared for similarity, for example, across species.
A simple way to make a comparison is to count the number of locations, or sites,
at which these fragments agree. For example, consider these two sequences, which
agree at three sites: fragment 1: AGATCAGT; and fragment 2: TGGATACT.

Many such comparisons are made, and to sort the wheat from the chaff, a prob-
ability model is often used. A comparison is deemed interesting if the number of
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matches is much larger than would be expected by chance alone. This requires a
chance model; a simple one stipulates that the nucleotide at each site of fragment 1
occurs randomly with probabilities pai, psi1, pci1, pri, and that the second fragment
is similarly composed with probabilities pas, ..., pro. What is the chance that the
fragments match at a particular site if in fact the identity of the nucleotide on frag-
ment 1 is independent of that on fragment 2? The match probability can be calculated
using the law of total probability:

P (match) = P(match|A on fragment 1) P (A on fragment 1) +
...+ P(match|T on fragment 1) P(T on fragment 1)
= pa2pPa1 + Pc2PG1 + PcaPci + Prapri

The problem of determining the probability that they match at k& out of a total of
n sites is discussed later. [ ]

Concluding Remarks

This chapter provides a simple axiomatic development of the mathematical theory of
probability. Some subtle issues that arise in a careful analysis of infinite sample spaces
have been neglected. Such issues are typically addressed in graduate-level courses
in measure theory and probability theory. Certain philosophical questions have also
been avoided. One might ask what is meant by the statement “The probability that
this coin will land heads up is %.” Two commonly advocated views are the frequen-
tist approach and the Bayesian approach. According to the frequentist approach,
the statement means that if the experiment were repeated many times, the long-run
average number of heads would tend to % According to the Bayesian approach, the
statement is a quantification of the speaker’s uncertainty about the outcome of the
experiment and thus is a personal or subjective notion; the probability that the coin
will land heads up may be different for different speakers, depending on their ex-
perience and knowledge of the situation. There has been vigorous and occasionally
acrimonious debate among proponents of various versions of these points of view.

In this and ensuing chapters, there are many examples of the use of probability
as a model for various phenomena. In any such modeling endeavor, an idealized
mathematical theory is hoped to provide an adequate match to characteristics of the
phenomenon under study. The standard of adequacy is relative to the field of study
and the modeler’s goals.

Problems

1. A coin is tossed three times and the sequence of heads and tails is recorded.

a. List the sample space.

b. List the elements that make up the following events: (1) A = at least two
heads, (2) B = the first two tosses are heads, (3) C = the last toss is a tail.

c. List the elements of the following events: (1) A°, (2) AN B, (3) AUC.
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Two six-sided dice are thrown sequentially, and the face values that come up are
recorded.

a. List the sample space.

b. List the elements that make up the following events: (1) A = the sum of the
two values is at least 5, (2) B = the value of the first die is higher than the
value of the second, (3) C = the first value is 4.

c. Listthe elements of the following events: (1) ANC, (2) BUC,(3) AN(BUC).

An urn contains three red balls, two green balls, and one white ball. Three balls
are drawn without replacement from the urn, and the colors are noted in sequence.
List the sample space. Define events A, B, and C as you wish and find their unions
and intersections.

Draw Venn diagrams to illustrate De Morgan’s laws:
(AUB) = AN B
(ANB) = A°UB*

Let A and B be arbitrary events. Let C be the event that either A occurs or B
occurs, but not both. Express C in terms of A and B using any of the basic
operations of union, intersection, and complement.

Verify the following extension of the addition rule (a) by an appropriate Venn
diagram and (b) by a formal argument using the axioms of probability and the
propositions in this chapter.

P(AUBUC) = P(A)+ P(B)+ P(C)— P(ANB)
—P(ANC)—PBNC)+PANBNC)
Prove Bonferroni’s inequality:
P(ANB)> P(A)+PB)—-1

Prove that

P (UA> =3Py
i=1 i=1

The weather forecaster says that the probability of rain on Saturday is 25% and
that the probability of rain on Sunday is 25%. Is the probability of rain during
the weekend 50%? Why or why not?

Make up another example of Simpson’s paradox by changing the numbers in
Example B of Section 1.4.

The first three digits of a university telephone exchange are 452. If all the se-
quences of the remaining four digits are equally likely, what is the probability
that a randomly selected university phone number contains seven distinct digits?

In a game of poker, five players are each dealt 5 cards from a 52-card deck. How
many ways are there to deal the cards?
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In a game of poker, what is the probability that a five-card hand will contain (a)
a straight (five cards in unbroken numerical sequence), (b) four of a kind, and (c)
a full house (three cards of one value and two cards of another value)?

The four players in a bridge game are each dealt 13 cards. How many ways are
there to do this?

How many different meals can be made from four kinds of meat, six vegetables,
and three starches if a meal consists of one selection from each group?

How many different letter arrangements can be obtained from the letters of the
word statistically, using all the letters?

In acceptance sampling, a purchaser samples 4 items from a lot of 100 and rejects
the lot if 1 or more are defective. Graph the probability that the lot is accepted as
a function of the percentage of defective items in the lot.

A lot of n items contains k defectives, and m are selected randomly and inspected.
How should the value of m be chosen so that the probability that at least one
defective item turns up is .90? Apply your answer to (a) n = 1000, k = 10, and
(b) n = 10,000, k = 100.

A committee consists of five Chicanos, two Asians, three African Americans,
and two Caucasians.

a. A subcommittee of four is chosen at random. What is the probability that all
the ethnic groups are represented on the subcommittee?
b. Answer the question for part (a) if a subcommittee of five is chosen.

A deck of 52 cards is shuffled thoroughly. What is the probability that the four
aces are all next to each other?

A fair coin is tossed five times. What is the probability of getting a sequence of
three heads?

A standard deck of 52 cards is shuffled thoroughly, and n cards are turned up.
What is the probability that a face card turns up? For what value of n is this
probability about .5?

How many ways are there to place n indistinguishable balls in n urns so that
exactly one urn is empty?

If n balls are distributed randomly into k urns, what is the probability that the
last urn contains j balls?

A woman getting dressed up for a night out is asked by her significant other to
wear a red dress, high-heeled sneakers, and a wig. In how many orders can she
put on these objects?

The game of Mastermind starts in the following way: One player selects four
pegs, each peg having six possible colors, and places them in a line. The sec-
ond player then tries to guess the sequence of colors. What is the probability of
guessing correctly?
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If a five-letter word is formed at random (meaning that all sequences of five letters
are equally likely), what is the probability that no letter occurs more than once?

How many ways are there to encode the 26-letter English alphabet into 8-bit
binary words (sequences of eight Os and 1s)?

A poker player is dealt three spades and two hearts. He discards the two hearts and
draws two more cards. What is the probability that he draws two more spades?

A group of 60 second graders is to be randomly assigned to two classes of 30 each.
(The random assignment is ordered by the school district to ensure against any
bias.) Five of the second graders, Marcelle, Sarah, Michelle, Katy, and Camerin,
are close friends. What is the probability that they will all be in the same class?
What is the probability that exactly four of them will be? What is the probability
that Marcelle will be in one class and her friends in the other?

Six male and six female dancers perform the Virginia reel. This dance requires
that they form a line consisting of six male/female pairs. How many such ar-
rangements are there?

A wine taster claims that she can distinguish four vintages of a particular Caber-
net. What is the probability that she can do this by merely guessing? (She is
confronted with four unlabeled glasses.)

An elevator containing five people can stop at any of seven floors. What is the
probability that no two people get off at the same floor? Assume that the occupants
act independently and that all floors are equally likely for each occupant.

Prove the following identity:

BIEGHEIE

(Hint: How can each of the summands be interpreted?)

Prove the following two identities both algebraically and by interpreting their
meaning combinatorially.

a. (7)=(")
n n—1 n—1
b. (r) = (r—l) +( r )
What is the coefficient of x3y* in the expansion of (x + y)7?
What is the coefficient of x?y?z® in the expansion of (x + y + z)7?

A child has six blocks, three of which are red and three of which are green. How
many patterns can she make by placing themallin aline? If she is given three white
blocks, how many total patterns can she make by placing all nine blocks in a line?

A monkey at a typewriter types each of the 26 letters of the alphabet exactly once,
the order being random.

a. What is the probability that the word Hamlet appears somewhere in the string
of letters?
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b. How many independent monkey typists would you need in order that the
probability that the word appears is at least .90?

In how many ways can two octopi shake hands? (There are a number of ways to
interpret this question—choose one.)

A drawer of socks contains seven black socks, eight blue socks, and nine green
socks. Two socks are chosen in the dark.

a. What is the probability that they match?
b. What is the probability that a black pair is chosen?

How many ways can 11 boys on a soccer team be grouped into 4 forwards,
3 midfielders, 3 defenders, and 1 goalie?

A software development company has three jobs to do. Two of the jobs require
three programmers, and the other requires four. If the company employs ten
programmers, how many different ways are there to assign them to the jobs?

In how many ways can 12 people be divided into three groups of 4 for an evening
of bridge? In how many ways can this be done if the 12 consist of six pairs of
partners?

Show that if the conditional probabilities exist, then

P(A/ N AsN---0 Ay
=P(ADP(A|ADP(A3|ATNAY) - P(A, AN AN NA, )

Urn A has three red balls and two white balls, and urn B has two red balls and
five white balls. A fair coin is tossed. If it lands heads up, a ball is drawn from
urn A; otherwise, a ball is drawn from urn B.

a. What is the probability that a red ball is drawn?
b. If a red ball is drawn, what is the probability that the coin landed heads up?

Urn A has four red, three blue, and two green balls. Urn B has two red, three
blue, and four green balls. A ball is drawn from urn A and put into urn B, and
then a ball is drawn from urn B.

a. What is the probability that a red ball is drawn from urn B?
b. If a red ball is drawn from urn B, what is the probability that a red ball was
drawn from urn A?

An urn contains three red and two white balls. A ball is drawn, and then it and
another ball of the same color are placed back in the urn. Finally, a second ball
is drawn.

a. What is the probability that the second ball drawn is white?
b. If the second ball drawn is white, what is the probability that the first ball
drawn was red?

A fair coin is tossed three times.

a. What is the probability of two or more heads given that there was at least one
head?
b. What is the probability given that there was at least one tail?
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Two dice are rolled, and the sum of the face values is six. What is the probability
that at least one of the dice came up a three?

Answer Problem 50 again given that the sum is less than six.

Suppose that 5 cards are dealt from a 52-card deck and the first one is a king.
What is the probability of at least one more king?

A fire insurance company has high-risk, medium-risk, and low-risk clients, who
have, respectively, probabilities .02, .01, and .0025 of filing claims within a given
year. The proportions of the numbers of clients in the three categories are .10,
.20, and .70, respectively. What proportion of the claims filed each year come
from high-risk clients?

This problem introduces a simple meteorological model, more complicated
versions of which have been proposed in the meteorological literature. Consider
a sequence of days and let R; denote the event that it rains on day i. Suppose
that P(R; | R;—;) = @ and P(R{ | R{_,) = B. Suppose further that only today’s
weather is relevant to predicting tomorrow’s; that is, P(R; | Ri_1 N R;_, N---N
Ro) = P(R; | Ri-1).

a. If the probability of rain today is p, what is the probability of rain tomorrow?
b. What is the probability of rain the day after tomorrow?

c. Whatis the probability of rain n days from now? What happens as n approaches

infinity?

This problem continues Example D of Section 1.5 and concerns occupational

mobility.

a. Find P(M, | M,) and P(L, | L,).

b. Find the proportions that will be in the three occupational levels in the third
generation. To do this, assume that a son’s occupational status depends on
his father’s status, but that given his father’s status, it does not depend on his
grandfather’s.

A couple has two children. What is the probability that both are girls given that
the oldest is a girl? What is the probability that both are girls given that one of
them is a girl?

There are three cabinets, A, B, and C, each of which has two drawers. Each
drawer contains one coin; A has two gold coins, B has two silver coins, and C
has one gold and one silver coin. A cabinet is chosen at random, one drawer is
opened, and a silver coin is found. What is the probability that the other drawer
in that cabinet contains a silver coin?

A teacher tells three boys, Drew, Chris, and Jason, that two of them will have
to stay after school to help her clean erasers and that one of them will be able to
leave. She further says that she has made the decision as to who will leave and who
will stay at random by rolling a special three-sided Dungeons and Dragons die.
Drew wants to leave to play soccer and has a clever idea about how to increase his
chances of doing so. He figures that one of Jason and Chris will certainly stay and
asks the teacher to tell him the name of one of the two who will stay. Drew’s idea



32

Chapter 1

Probability

59.

60.

61.

62.

63.

64.

65.

66.
67.

68.

69.
70.
71.

is that if, for example, Jason is named, then he and Chris are left and they each
have a probability .5 of leaving; similarly, if Chris is named, Drew’s probability
of leaving is still .5. Thus, by merely asking the teacher a question, Drew will
increase his probability of leaving from % to % What do you think of this scheme?

A box has three coins. One has two heads, one has two tails, and the other is a

fair coin with one head and one tail. A coin is chosen at random, is flipped, and

comes up heads.

a. What is the probability that the coin chosen is the two-headed coin?

b. What is the probability that if it is thrown another time it will come up heads?

¢. Answer part (a) again, supposing that the coin is thrown a second time and
comes up heads again.

A factory runs three shifts. In a given day, 1% of the items produced by the first
shift are defective, 2% of the second shift’s items are defective, and 5% of the
third shift’s items are defective. If the shifts all have the same productivity, what
percentage of the items produced in a day are defective? If an item is defective,
what is the probability that it was produced by the third shift?

Suppose that chips for an integrated circuit are tested and that the probability
that they are detected if they are defective is .95, and the probability that they are
declared sound if in fact they are sound is .97. If .5% of the chips are faulty, what
is the probability that a chip that is declared faulty is sound?

Show that if P(A|E) > P(B|E) and P(A|ES) > P(B|E°), then P(A) >
P(B).

Suppose that the probability of living to be older than 70 is .6 and the probability
of living to be older than 80 is .2. If a person reaches her 70th birthday, what is
the probability that she will celebrate her 80th?

If B is an event, with P(B) > 0, show that the set function Q(A) = P(A|B)
satisfies the axioms for a probability measure. Thus, for example,

P(AUC|B)=P(A|B)+ P(C|B)— P(ANC|B)

Show that if A and B are independent, then A and B¢ as well as A° and B¢ are
independent.

Show that ¢ is independent of A for any A.

Show that if A and B are independent, then

P(AUB)=P(A)+ P(B) — P(A)P(B)

If A is independent of B and B is independent of C, then A is independent of C.
Prove this statement or give a counterexample if it is false.

If A and B are disjoint, can they be independent?
If A C B, can A and B be independent?

Show that if A, B, and C are mutually independent, then A N B and C are
independent and A U B and C are independent.
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Suppose that n components are connected in series. For each unit, there is a
backup unit, and the system fails if and only if both a unit and its backup fail.
Assuming that all the units are independent and fail with probability p, what is
the probability that the system works? For n = 10 and p = .05, compare these
results with those of Example F in Section 1.6.

A system has n independent units, each of which fails with probability p. The
system fails only if k or more of the units fail. What is the probability that
the system fails?

What is the probability that the following system works if each unit fails inde-
pendently with probability p (see Figure 1.5)?

© ©
o
© ©
FIGURE 1.5
75. This problem deals with an elementary aspect of a simple branching process. A

76.

77.

78.

population starts with one member; at time ¢ = 1, it either divides with prob-
ability p or dies with probability 1 — p. If it divides, then both of its children
behave independently with the same two alternatives at time = 2. What is the
probability that there are no members in the third generation? For what value of
p is this probability equal to .5?

Here is a simple model of a queue. The queue runs in discrete time (t =
0,1,2,...), and at each unit of time the first person in the queue is served with
probability p and, independently, a new person arrives with probability ¢. At
time ¢ = 0, there is one person in the queue. Find the probabilities that there are
0, 1, 2, 3 people in line at time t = 2.

A player throws darts at a target. On each trial, independently of the other trials,
he hits the bull’s-eye with probability .05. How many times should he throw so
that his probability of hitting the bull’s-eye at least once is .57

This problem introduces some aspects of a simple genetic model. Assume that
genes in an organism occur in pairs and that each member of the pair can be either
of the types a or A. The possible genotypes of an organism are then AA, Aa, and
aa (Aa and a A are equivalent). When two organisms mate, each independently
contributes one of its two genes; either one of the pair is transmitted with prob-
ability .5.

a. Suppose that the genotypes of the parents are AA and Aa. Find the possible

genotypes of their offspring and the corresponding probabilities.
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Suppose that the probabilities of the genotypes AA, Aa, and aa are p, 2q,
and r, respectively, in the first generation. Find the probabilities in the second
and third generations, and show that these are the same. This result is called
the Hardy-Weinberg Law.

. Compute the probabilities for the second and third generations as in part (b)

but under the additional assumption that the probabilities that an individual of
type AA, Aa, or aa survives to mate are u#, v, and w, respectively.

79. Many human diseases are genetically transmitted (for example, hemophilia or
Tay-Sachs disease). Here is a simple model for such a disease. The genotype
aa is diseased and dies before it mates. The genotype Aa is a carrier but is not
diseased. The genotype AA is not a carrier and is not diseased.

80.

a.

b.

If two carriers mate, what are the probabilities that their offspring are of each
of the three genotypes?

If the male offspring of two carriers is not diseased, what is the probability
that he is a carrier?

Suppose that the nondiseased offspring of part (b) mates with a member of the
population for whom no family history is available and who is thus assumed
to have probability p of being a carrier (p is a very small number). What are
the probabilities that their first offspring has the genotypes AA, Aa, and aa?
Suppose that the first offspring of part (c) is not diseased. What is the proba-
bility that the father is a carrier in light of this evidence?

If a parent has genotype Aa, he transmits either A or a to an offspring (each with
a % chance). The gene he transmits to one offspring is independent of the one
he transmits to another. Consider a parent with three children and the following
events: A = {children 1 and 2 have the same gene}, B = {children 1 and 3 have
the same gene}, C = {children 2 and 3 have the same gene}. Show that these
events are pairwise independent but not mutually independent.
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Discrete Random Variables

A random variable is essentially a random number. As motivation for a definition, let
us consider an example. A coin is thrown three times, and the sequence of heads and
tails is observed; thus,

Q = {hhh, hht, htt, hth, ttt, tth, thh, tht}

Examples of random variables defined on €2 are (1) the total number of heads, (2) the
total number of tails, and (3) the number of heads minus the number of tails. Each of
these is a real-valued function defined on €2; that is, each is a rule that assigns a real
number to every point w € €2. Since the outcome in €2 is random, the corresponding
number is random as well.

In general, a random variable is a function from 2 to the real numbers. Because
the outcome of the experiment with sample space €2 is random, the number produced
by the function is random as well. It is conventional to denote random variables by
italic uppercase letters from the end of the alphabet. For example, we might define
X to be the total number of heads in the experiment described above. A discrete
random variable is a random variable that can take on only a finite or at most a
countably infinite number of values. The random variable X just defined is a discrete
random variable since it can take on only the values 0, 1, 2, and 3. For an example of
arandom variable that can take on a countably infinite number of values, consider an
experiment that consists of tossing a coin until a head turns up and defining Y to be
the total number of tosses. The possible values of ¥ are 0, 1, 2, 3, .... In general, a
countably infinite set is one that can be put into one-to-one correspondence with the
integers.

If the coin is fair, then each of the outcomes in Q2 above has probability %,
from which the probabilities that X takes on the values 0, 1, 2, and 3 can be easily

35



36

Chapter 2 Random Variables

computed:
P(X=0) =g
PX=1)=3
PX=2=13
P(X=3)=3

Generally, the probability measure on the sample space determines the probabilities
of the various values of X if those values are denoted by x, x», ..., then there is a
function p such that p(x;) = P(X = x;) and ), p(x;) = 1. This function is called
the probability mass function, or the frequency function, of the random variable
X. Figure 2.1 shows a graph of p(x) for the coin tossing experiment. The frequency
function describes completely the probability properties of the random variable.

4r

p(x)
io

X

FIGURE 2.1 A probability mass function.

In addition to the frequency function, it is sometimes convenient to use the
cumulative distribution function (cdf) of a random variable, which is defined to be

F(x)=P(X <x), —00 < X <00

Cumulative distribution functions are usually denoted by uppercase letters and fre-
quency functions by lowercase letters. Figure 2.2 is a graph of the cumulative distri-
bution function of the random variable X of the preceding paragraph. Note that the cdf
jumps wherever p(x) > 0 and that the jump at x; is p(x;). For example, if 0 < x <
1, F(x) = §f;atx = 1, F(x) jumpsto F(1) = § = 1. Thejumpatx = 1is p(1) = 3.
The cumulative distribution function is non-decreasing and satisfies
Emoo F(x)=0 and lim F(x) =1.

X—>00

Chapter 3 will cover in detail the joint frequency functions of several random
variables defined on the same sample space, but it is useful to define here the concept



2.1.1

2.1 Discrete Random Variables 37

F(x)

FIGURE 2.2 The cumulative distribution function corresponding to Figure 2.1.

of independence of random variables. In the case of two discrete random variables X
and Y, taking on possible values x|, x5, ..., and yi, 2, ..., X and Y are said to be
independent if, for all i and j,

PX=x;andY =y;,)=P(X =x)PY =y;)

The definition is extended to collections of more than two discrete random variables
in the obvious way; for example, X, Y, and Z are said to be mutually independent if,
for all i, j, and k,

PX=x,Y=y,,Z=2)=PX=x))P(Y =y)P(Z=2)

We next discuss some common discrete distributions that arise in applications.

Bernoulli Random Variables

A Bernoulli random variable takes on only two values: 0 and 1, with probabilities
1 — p and p, respectively. Its frequency function is thus

p()=p
pO)=1-p
px) =0, ifx #0andx # 1
An alternative and sometimes useful representation of this function is
X _ I1—x : — —
p(x)={p(1 P i x=0o0rx=1
, otherwise

If A is an event, then the indicator random variable, /4, takes on the value 1 if
A occurs and the value 0 if A does not occur:

1, fwoeA
[a(@) = {O, otherwise
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2.1.2

EXAMPLE A

1, is a Bernoulli random variable. In applications, Bernoulli random variables often
occur as indicators. A Bernoulli random variable might take on the value 1 or O
according to whether a guess was a success or a failure.

The Binomial Distribution

Suppose that n independent experiments, or trials, are performed, where 7 is a fixed
number, and that each experiment results in a “success” with probability p and a
“failure” with probability 1 — p. The total number of successes, X, is a binomial
random variable with parameters n and p. For example, a coin is tossed 10 times and
the total number of heads is counted (“head” is identified with “success”).

The probability that X = k, or p(k), can be found in the following way: Any
particular sequence of k successes occurs with probability p*(1 — p)"~*, from the
multiplication principle. The total number of such sequences is (Z), since there are
(Z) ways to assign k successes to n trials. P(X = k) is thus the probability of any
particular sequence times the number of such sequences:

plk) = (>p(1 Pt

Two binomial frequency functions are shown in Figure 2.3. Note how the shape varies
as a function of p.

4
)
[SW
0
0 1 2 3 4 5 6 7 8 9 10
X
(a)
20
=
- H |_|
ol =[] (1
0o 1 2 4 5 6 7 8 9 10

X

(b)

FIGURE 2.3 Binomial frequency functions, (a) n =10 and p=.1 and (b) n =10
and p=.5.

Tay-Sachs disease is a rare but fatal disease of genetic origin occurring chiefly in
infants and children, especially those of Jewish or eastern European extraction. If a
couple are both carriers of Tay-Sachs disease, a child of theirs has probability .25 of
being born with the disease. If such a couple has four children, what is the frequency
function for the number of children who will have the disease?
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We assume that the four outcomes are independent of each other, so, if X denotes
the number of children with the disease, its frequency function is

4 k 4—k
pk) = L 25" x 757K, k=0,1,2,3,4

These probabilities are given in the following table:

k pk)
0 316
1 422
2 211
3 047
4 .004

If a single bit (0 or 1) is transmitted over a noisy communications channel, it has
probability p of being incorrectly transmitted. To improve the reliability of the trans-
mission, the bit is transmitted n times, where n is odd. A decoder at the receiving
end, called a majority decoder, decides that the correct message is that carried by a
majority of the received bits. Under a simple noise model, each bit is independently
subject to being corrupted with the same probability p. The number of bits that is
in error, X, is thus a binomial random variable with n trials and probability p of
success on each trial (in this case, and frequently elsewhere, the word success is used
in a generic sense; here a success is an error). Suppose, for example, that n = 5 and
p = .1. The probability that the message is correctly received is the probability of
two or fewer errors, which is

2
n
> <k) P —p)y ™ =p’(1—p)’+5p — p)* +10p*(1 — p)’ = .9914
k=0

The result is a considerable improvement in reliability. [ |

DNA Matching

We continue Example G of Section 1.6. There we derived the probability p that two
fragments agree at a particular site under the assumption that the nucleotide proba-
bilities were the same at every site and the identities on fragment 1 were independent
of those on fragment 2. To find the probability of the total number of matches, further
assumptions must be made. Suppose that the fragments are each of length n and that
the nucleotide identities are independent from site to site as well as between frag-
ments. Thus, the identity of the nucleotide at site 1 of fragment 1 is independent of the
identity at site 2, etc. We did not make this assumption in Example G in Section 1.6;
in that case, the identity at site 2 could have depended on the identity at site 1, for
example. Now, under the current assumption, the two fragments agree at each site
with probability p as calculated in Example G of Section 1.6, and agreement is in-
dependent from site to site. So, the total number of agreements is a binomial random
variable with n trials and probability p of success. [ |
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EXAMPLE A

A random variable with a binomial distribution can be expressed in terms of inde-
pendent Bernoulli random variables, a fact that will be quite useful for analyzing some
properties of binomial random variables in later chapters of this book. Specifically,
let X, X5, ..., X,, be independent Bernoulli random variables with p(X; = 1) = p.
ThenY = X, + X, + - -- + X,, is a binomial random variable.

The Geometric and Negative Binomial Distributions

The geometric distribution is also constructed from independent Bernoulli trials,
but from an infinite sequence. On each trial, a success occurs with probability p, and
X is the total number of trials up to and including the first success. So that X = k,
there must be k — 1 failures followed by a success. From the independence of the
trials, this occurs with probability

plk)y=P(X =k)=(1—p)'p, k=1,2,3,...

Note that these probabilities sum to 1:

dd=p)lp=p> (1-p)i=1
k=1 j=0

The probability of winning in a certain state lottery is said to be about é Ifitis exactly
%, the distribution of the number of tickets a person must purchase up to and including
the first winning ticket is a geometric random variable with p = é. Figure 2.4 shows
the frequency function. [ |
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IGURE 2.4 The probability mass function of a geometric random variable with
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The negative binomial distribution arises as a generalization of the geometric
distribution. Suppose that a sequence of independent trials, each with probability of
success p, is performed until there are r successes in all; let X denote the total number
of trials. To find P(X = k), we can argue in the following way: Any particular such
sequence has probability p"(1 — p)*~", from the independence assumption. The last
trial is a success, and the remaining r — 1 successes can be assigned to the remaining
k — 1 trials in (f:f) ways. Thus,

P(X=k) = < )p’(l —p)

It is sometimes helpful in analyzing properties of the negative binomial distribu-
tion to note that a negative binomial random variable can be expressed as the sum of
r independent geometric random variables: the number of trials up to and including
the first success plus the number of trials after the first success up to and including
the second success, . . . plus the number of trials from the (r — 1)st success up to and
including the rth success.

r—1

Continuing Example A, the distribution of the number of tickets purchased up to and
including the second winning ticket is negative binomial:

pk) =k —Dp*d —p)*?

This frequency function is shown in Figure 2.5. [ ]

.05

.04 - : °

03 F *

p(x)

01 ‘e

0 1 1 1 1 1
0 10 20 30 40 50

FIGURE 2.5 The probability mass function of a negative binomial random variable
with p = ]5 andr = 2.

The definitions of the geometric and negative binomial distributions vary slightly
from one textbook to another; for example, instead of X being the total number of
trials in the definition of the geometric distribution, X is sometimes defined as the
total number of failures.
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2.1.4

EXAMPLE A

2.1.5

The Hypergeometric Distribution

The hypergeometric distribution was introduced in Chapter 1 but was not named
there. Suppose that an urn contains n balls, of which r are black and n —r are white. Let
X denote the number of black balls drawn when taking m balls without replacement.
Following the line of reasoning of Examples H and I of Section 1.4.2,

(=)

X is a hypergeometric random variable with parameters r, n, and m.

As explained in Example G of Section 1.4.2, a player in the California lottery chooses
6 numbers from 53 and the lottery officials later choose 6 numbers at random. Let X
equal the number of matches. Then

(&) (6=)
k)\6—k
P(X =k = e
6
The probability mass function of X is displayed in the following table:
k ‘ 0 1 2 3 4 5 6

pk) ’ 468 401 117 014 7.06x 107* 122 x 105 4.36 x 108

The Poisson Distribution

The Poisson frequency function with parameter (A > 0) is
k

A
P(X:k):;e , k=0,1,2,...

Since e* = Y7, (A*/k!), it follows that the frequency function sums to 1. Figure 2.6
shows four Poisson frequency functions. Note how the shape varies as a function of A.
The Poisson distribution can be derived as the limit of a binomial distribution as
the number of trials, n, approaches infinity and the probability of success on each trial,
P, approaches zero in such a way that np = A. The binomial frequency function is

_ n! kel n—k
plk) = Koo’ I=p

Setting np = A, this expression becomes

I/l‘ )\‘ k )\ n—k

Akl 1( ,\)< x)k
=" __(1=-= 1—-Z=

k! (n —k)! n* n n

plk) =
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Asn — oo,
A
- =0
n
n!
(n — k)!nk



44  Chapter 2

EXAMPLE A

Random Variables

and
3\
(1——) — 1
n
We thus have
kp—h
pk) — a

which is the Poisson frequency function.

Two dice are rolled 100 times, and the number of double sixes, X, is counted. The
distribution of X is binomial withn = 100 and p = % = .0278. Since n is large and p

is small, we can approximate the binomial probabilities by Poisson probabilities with
A = np = 2.78. The exact binomial probabilities and the Poisson approximations are
shown in the following table:

Binomial Poisson

k Probability Approximation
0 .0596 .0620
1 .1705 1725

2 2414 2397

3 2255 2221

4 1564 1544

5 .0858 .0858

6 .0389 .0398

7 .0149 0158
8 .0050 .0055

9 .0015 .0017

10 .0004 .0005

11 .0001 .0001

The approximation is quite good. [ ]

The Poisson frequency function can be used to approximate binomial probabil-
ities for large n and small p. This suggests how Poisson distributions can arise in
practice. Suppose that X is a random variable that equals the number of times some
event occurs in a given interval of time. Heuristically, let us think of dividing the
interval into a very large number of small subintervals of equal length, and let us
assume that the subintervals are so small that the probability of more than one event
in a subinterval is negligible relative to the probability of one event, which is itself
very small. Let us also assume that the probability of an event is the same in each
subinterval and that whether an event occurs in one subinterval is independent of what
happens in the other subintervals. The random variable X is thus nearly a binomial
random variable, with the subintervals consitituting the trials, and, from the limiting
result above, X has nearly a Poisson distribution.

The preceding argument is not formal, of course, but merely suggestive. But, in
fact, it can be made rigorous. The important assumptions underlying it are (1) what
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happens in one subinterval is independent of what happens in any other subinterval,
(2) the probability of an event is the same in each subinterval, and (3) events do not
happen simultaneously. The same kind of argument can be made if we are concerned
with an area or a volume of space rather than with an interval on the real line.

The Poisson distribution is of fundamental theoretical and practical importance.
It has been used in many areas, including the following:

* The Poisson distribution has been used in the analysis of telephone systems. The
number of calls coming into an exchange during a unit of time might be modeled
as a Poisson variable if the exchange services a large number of customers who act
more or less independently.

* One of the earliest uses of the Poisson distribution was to model the number of
alpha particles emitted from a radioactive source during a given period of time.

* The Poisson distribution has been used as a model by insurance companies. For
example, the number of freak acidents, such as falls in the shower, for a large popu-
lation of people in a given time period might be modeled as a Poisson distribution,
because the accidents would presumably be rare and independent (provided there
was only one person in the shower).

* The Poisson distribution has been used by traffic engineers as a model for light
traffic. The number of vehicles that pass a marker on a roadway during a unit of
time can be counted. If traffic is light, the individual vehicles act independently
of each other. In heavy traffic, however, one vehicle’s movement may influence
another’s, so the approximation might not be good.

This amusing classical example is from von Bortkiewicz (1898). The number of
fatalities that resulted from being kicked by a horse was recorded for 10 corps of
Prussian cavalry over a period of 20 years, giving 200 corps-years worth of data.
These data and the probabilities from a Poisson model with A = .61 are displayed
in the following table. The first column of the table gives the number of deaths per
year, ranging from O to 4. The second column lists how many times that number of
deaths was observed. Thus, for example, in 65 of the 200 corps-years, there was one
death. In the third column of the table, the observed numbers are converted to relative
frequencies by dividing them by 200. The fourth column of the table gives Poisson
probabilities with the parameter A = .61. In Chapters 8 and 9, we discuss how to
choose a parameter value to fit a theoretical probability model to observed frequencies
and methods for testing goodness of fit. For now, we will just remark that the value
A = .61 was chosen to match the average number of deaths per year.

Number of Deaths Relative Poisson
per Year Observed Frequency Probability
0 109 .545 .543
1 65 325 331
2 22 110 .101
3 3 .015 021
4 1 .005 .003 u
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EXAMPLE C

EXAMPLE D

The Poisson distribution often arises from a model called a Poisson process for
the distribution of random events in a set S, which is typically one-, two-, or three-
dimensional, corresponding to time, a plane, or a volume of space. Basically, this
model states thatif S, S,, ..., S, are disjoint subsets of S, then the numbers of events
in these subsets, Ny, N,, ..., N,, are independent random variables that follow Pois-
son distributions with parameters 1| S|, A|S>[, . .., A|S,|, where | S;| denotes the mea-
sure of S; (length, area, or volume, for example). The crucial assumptions here are that
events in disjoint subsets are independent of each other and that the Poisson parameter
for asubset is proportional to the subset’s size. Later, we will see that this latter assump-
tion implies that the average number of events in a subset is proportional to its size.

Suppose that an office receives telephone calls as a Poisson process with A = .5
per min. The number of calls in a 5-min. interval follows a Poisson distribution with
parameter w = 5\ = 2.5. Thus, the probability of no calls in a 5-min. interval is
e~25 = .082. The probability of exactly one call is 2.5¢7>> = .205. ]

Figure 2.7 shows four realizations of a Poisson process with A = 25 in the unit square,
0 <x < landO0 < y < I.Itisinteresting that the eye tends to perceive patterns, such

y y
1 _ 1
. LK T
oL N oL .2 .
0 1 0 1
y y
1 rE— 1
. :. * LX)
0 x 0 x
0 1 0 1

FIGURE 2.7 Four realizations of a Poisson process with A = 25.
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as clusters of points and large blank spaces. But by the nature of a Poisson process,
the locations of the points have no relationship to one another, and these patterns are
entirely a result of chance. u

Continuous Random Variables

In applications, we are often interested in random variables that can take on a contin-
uum of values rather than a finite or countably infinite number. For example, a model
for the lifetime of an electronic component might be that it is random and can be
any positive real number. For a continuous random variable, the role of the frequency
function is taken by a density function, f (x), which has the properties that f(x) > 0,
f 1s piecewise continuous, and ffooo f(x) dx = 1. If X is a random variable with
a density function f, then for any @ < b, the probability that X falls in the interval
(a, b) is the area under the density function between a and b:

b
P(a<X<b):/ f(x) dx

A uniform random variable on the interval [0, 1] is a model for what we mean when
we say “choose a number at random between 0 and 1.” Any real number in the interval
is a possible outcome, and the probability model should have the property that the
probability that X is in any subinterval of length 4 is equal to /. The following density

function does the job:
I, 0<x<1
f(x)_{O, x <0orx>1

This is called the uniform density on [0, 1]. The uniform density on a general interval
[a, b] is

x<aorx>>b

f(x):{(l)/(b—a), a<x=<b

One consequence of this definition is that the probability that a continuous random
variable X takes on any particular value is O:

P(X:c):/cf(x)dx=0

Although this may seem strange initially, it is really quite natural. If the uniform
random variable of Example A had a positive probability of being any particular
number, it should have the same probability for any number in [0, 1], in which case
the sum of the probabilities of any countably infinite subset of [0, 1] (for example,
the rational numbers) would be infinite. If X is a continuous random variable, then

Pla<X<b)=Pla<X<b)=Pla<X<bh)

Note that this is not true for a discrete random variable.
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EXAMPLE C

For small 8, if f is continuous at x,

5 5 x18)2
P(x—§§X§x+§>=/ f ) du ~ 57 (x)

—5/2

Therefore, the probability of a small interval around x is proportional to f(x). It is
sometimes useful to employ differential notation: P(x < X <x +dx) = f(x) dx.

The cumulative distribution function of a continuous random variable X is defined
in the same way as for a discrete random variable:

F(x)=P(X <x)
F(x) can be expressed in terms of the density function:

F()c):/)C f(u) du

From the fundamental theorem of calculus, if f is continuous at x, f(x) = F’(x).
The cdf can be used to evaluate the probability that X falls in an interval:

b
P(asXsb)=/ fx)dx = F(b) — F(a)

From this definition, we see that the cdf of a uniform random variable on [0, 1]
(Example A) is

Suppose that F is the cdf of a continuous random variable and is strictly increasing
on some interval /, and that F = O to the left of / and F = 1 to the right of /; /
may be unbounded. Under this assumption, the inverse function F~! is well defined;
x = F~!(y) if y = F(x). The pth quantile of the distribution F is defined to be that
value x, such that F(x,) = p, or P(X < x,) = p. Under the preceding assumption
stated, x, is uniquely defined as x, = F~'(p); see Figure 2.8. Special cases are
p = % which corresponds to the median of F; and p = i and p = %, which
correspond to the lower and upper quartiles of F.

Suppose that F'(x) = x2 for 0 < x < 1. This statement is shorthand for the more

explicit statement
0, x <0
F(x):{xz, 0<x<1

1, X

To find F~!, we solve y = F(x) = x? for x, obtaining x = F~'(y) = ,/y. The
median is F~'(.5) = .707, the lower quartile is F~'(.25) = .50, and the upper
quartile is F~'(.75) = .866. [
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F(x)

1
0 1 2 3
X

FIGURE 2.8 Acdf F and F~'.

Value at Risk

Financial firms need to quantify and monitor the risk of their investments. Value at
Risk (VaR) is a widely used measure of potential losses. It involves two parameters:
a time horizon and a level of confidence. For example, if the VaR of an institution is
$10 million with a one-day horizon and a level of confidence of 95%, the interpretation
is that there is a 5% chance of losses exceeding $10 million. Such a loss should be
anticipated about once in 20 days.

To see how VaR is computed, suppose the current value of the investment is V
and the future value is V;. The return on the investment is R = (V; — V;)/ V4, which
is modeled as a continuous random variable with cdf F(r). Let the desired level of
confidence be denoted by 1 — . We want to find v*, the VaR. Then

a=PVy—-V,=v"

Vl — V() v*
=P < ——
Voo & W

Thus, —v*/V, is the « quantile, 7,; and v* = —Vyr,. The VaR is minus the current
value times the « quantile of the return distribution. [ ]

We next discuss some density functions that commonly arise in practice.
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2.2.1 The Exponential Density

The exponential density function is

re x>0
x) = -
S {O, x <0
Like the Poisson distribution, the exponential density depends on a single parameter,
A > 0, and it would therefore be more accurate to refer to it as the family of expo-

nential densities. Several exponential densities are shown in Figure 2.9. Note that as
A becomes larger, the density drops off more rapidly.

20
(]
1
1
1
1
15K
1
1
1
1
= 1.0
S~

ok S<ees

L L P ———
1

4 6 8
X

10

FIGURE 2.9 Exponential densities with » = .5 (solid), » = 1 (dotted), and » = 2
(dashed).

The cumulative distribution function is easily found:

F(x):/"‘ f(u)du={1_€_“’ x20

0, x <0
The median of an exponential distribution, n, say, is readily found from the cdf. We
solve F(n) = %:

A 1
1—e =3
from which we have

log2
A
The exponential distribution is often used to model lifetimes or waiting times, in
which context it is conventional to replace x by 7. Suppose that we consider modeling
the lifetime of an electronic component as an exponential random variable, that the

77:
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component has lasted a length of time s, and that we wish to calculate the probability
that it will last at least # more time units; that is, we wishto find P(T > t+s | T > s):

P(T>t+sand T > s)
P(T > s)
. P(T >t+ys)
T P(T >9)
e—)u(t+s)

P(T>t+s|T>s)=

e—As
— e*A[

We see that the probability that the unit will last # more time units does not depend
on 5. The exponential distribution is consequently said to be memoryless; it is clearly
not a good model for human lifetimes, since the probability that a 16-year-old will
live at least 10 more years is not the same as the probability that an 80-year-old
will live at least 10 more years. It can be shown that the exponential distribution
is characterized by this memoryless property—that is, the memorylessness implies
that the distribution is exponential. It may be somewhat surprising that a qualitative
characterization, the property of memorylessness, actually determines the form of
this density function.

The memoryless character of the exponential distribution follows directly from
its relation to a Poisson process. Suppose that events occur in time as a Poisson process
with parameter A and that an event occurs at time #y. Let 7 denote the length of time
until the next event. The density of 7' can be found as follows:

P(T > t) = P(noeventsin (fy, ty + 1))

Since the number of events in the interval (¢, 7y + ¢), which is of length ¢, follows a
Poisson distribution with parameter Az, this probability is e=*, and thus T follows an
exponential distribution with parameter A. We can continue in this fashion. Suppose
that the next event occurs at time f;; the distribution of time until the third event is
again exponential by the same analysis and, from the independence property of the
Poisson process, is independent of the length of time between the first two events.
Generally, the times between events of a Poisson process are independent, identically
distributed, exponential random variables.

Proteins and other biologically important molecules are regulated in various
ways. Some undergo aging and are thus more likely to degrade when they are old
than when they are young. If a molecule was not subject to aging, but its chance
of degradation was the same at any age, its lifetime would follow an exponential
distribution.

Muscle and nerve cell membranes contain large numbers of channels through which
selected ions can pass when the channels are open. Using sophisticated experimental
techniques, neurophysiologists can measure the resulting current that flows through
a single channel, and experimental records often indicate that a channel opens and
closes at seemingly random times. In some cases, simple kinetic models predict that
the duration of the open time should be exponentially distributed.
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FIGURE 2.10 Histograms of open times at varying concentrations of
suxamethonium and fitted exponential densities.

Marshall et al. (1990) studied the action of a channel-blocking agent (suxa-
methonium) on a channel (the nicotinic receptor of frog muscle). Figure 2.10 displays
histograms of open times and fitted exponential distributions at a range of concentra-
tions of suxamethonium. In this example, the exponential distribution is parametrized
as f(t) = (1/t)exp(—t/7). T is thus in units of time, whereas A is in units of the
reciprocal of time. From the figure, we see that the intervals become shorter and that
the parameter t decreases with increasing concentrations of the blocker. It can also
be seen, especially at higher concentrations, that very short intervals are not recorded
because of limitations of the instrumentation. [ |




2.2.2

EXAMPLE A

2.2 Continuous Random Variables 53

The Gamma Density

The gamma density function depends on two parameters, o and A:
o

g(t) = X—t“”e*“ t>0
F(a) b p—

Fort < 0, g(¢) = 0. So that the density be well defined and integrate to 1, « > 0 and
A > 0. The gamma function, I"(x), is defined as

o0
'x) = / w e du, x>0
0

Some properties of the gamma function are developed in the problems at the end of
this chapter.

Note that if « = 1, the gamma density coincides with the exponential density.
The parameter « is called a shape parameter for the gamma density, and A is called
a scale parameter. Varying o changes the shape of the density, whereas varying A

corresponds to changing the units of measurement (say, from seconds to minutes) and
does not affect the shape of the density.

Figure 2.11 shows several gamma densities. Gamma densities provide a fairly
flexible class for modeling nonnegative random variables.

25
2.0

1.5

g(1)

1.0,

g(1)

(@) ! (b) !

FIGURE 2.11 Gamma densities, (a) « = .5 (solid) and o = 1 (dotted) and (b) & = 5
(solid) and @ = 10 (dotted); A = 1 in all cases.

The patterns of occurrence of earthquakes in terms of time, space, and magnitude
are very erratic, and attempts are sometimes made to construct probabilistic models
for these events. The models may be used in a purely descriptive manner or, more
ambitiously, for purposes of predicting future occurrences and consequent damage.
Figure 2.12 shows the fit of a gamma density and an exponential density to the
observed times separating a sequence of small earthquakes (Udias and Rice, 1975).
The gamma density clearly gives a better fit (0« = .509 and A = .00115). Note that an
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1369
(1331)

600 Kl 1968—1971
Time intervals

N = 4764

500 -

400 -

Frequency

300

200

100 |

Hours

FIGURE 2.12 Fit of gamma density (triangles) and of exponential density (circles) to
times between microearthquakes.

exponential model for interoccurrence times would be memoryless; that is, knowing
that an earthquake had not occurred in the last ¢ time units would tell us nothing
about the probability of occurrence during the next s time units. The gamma model
does not have this property. In fact, although we will not show this, the gamma model
with these parameter values has the character that there is a large likelihood that the
next earthquake will immediately follow any given one and this likelihood decreases
monotonically with time. u

The Normal Distribution

The normal distribution plays a central role in probability and statistics, for reasons
that will become apparent in later chapters of this book. This distribution is also called
the Gaussian distribution after Carl Friedrich Gauss, who proposed it as a model for
measurement errors. The central limit theorem, which will be discussed in Chapter 6,
justifies the use of the normal distribution in many applications. Roughly, the central
limit theorem says that if arandom variable is the sum of a large number of independent
random variables, it is approximately normally distributed. The normal distribution
has been used as a model for such diverse phenomena as a person’s height, the distribu-
tion of IQ scores, and the velocity of a gas molecule. The density function of the normal
distribution depends on two parameters, i and o (where —oco < u < 00,0 > 0):

1 2 2
fx) = ——==e W2 —00 <X <00
o

V2m
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The parameters p and o are called the mean and standard deviation of the normal
density.

The cdf cannot be evaluated in closed form from this density function (the integral
that defines the cdf cannot be evaluated by an explicit formula but must be found
numerically). A problem at the end of this chapter asks you to show that the normal
density just given integrates to one.

As shorthand for the statement “X follows a normal distribution with parameters
wando,” itis convenient touse X ~ N (u, o%). From the form of the density function,
we see that the density is symmetric about u, f(u — x) = f(u + x), where it has a
maximum, and that the rate at which it falls off is determined by o. Figure 2.13 shows
several normal densities. Normal densities are sometimes referred to as bell-shaped
curves. The special case for which © = 0 and o = 1 is called the standard normal
density. Its cdf is denoted by @ and its density by ¢ (not to be confused with the
empty set). The relationship between the general normal density and the standard
normal density will be developed in the next section.

f(x)
N

FIGURE 2.13 Normal densities, u =0 and o = .5 (solid), u =0 and o =1
(dotted), and . = 0 and o = 2 (dashed).

Acoustic recordings made in the ocean contain substantial background noise. To de-
tect sonar signals of interest, it is useful to characterize this noise as accurately as
possible. In the Arctic, much of the background noise is produced by the cracking
and straining of ice. Veitch and Wilks (1985) studied recordings of Arctic undersea
noise and characterized the noise as a mixture of a Gaussian component and occa-
sional large-amplitude bursts. Figure 2.14 is a trace of one recording that includes a
burst. Figure 2.15 shows a Gaussian distribution fit to observations from a “quiet”
(nonbursty) period of this noise. [ |
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FIGURE 2.14 A record of undersea noise containing a large burst.
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FIGURE 2.15 A histogram from a “quiet” period of undersea noise with a fitted
normal density.

Turbulent air flow is sometimes modeled as a random process. Since the velocity of
the flow at any point is subject to the influence of a large number of random eddies
in the neighborhood of that point, one might expect from the central limit theorem
that the velocity would be normally distributed. Van Atta and Chen (1968) analyzed
data gathered in a wind tunnel. Figure 2.16, taken from their paper, shows a normal
distribution fit to 409,600 observations of one component of the velocity; the fit is
remarkably good. u

S&P 500

The Standard and Poors 500 is an index of important U.S. stocks; each stock’s weight
in the index is proportional to its market value. Individuals can invest in mutual funds
that track the index. The top panel of Figure 2.17 shows the sequential values of the
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FIGURE 2.16 A normal density (solid line) fit to 409,600 measurements of one
component of the velocity of a turbulent wind flow. The dots show the values from a
histogram.
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FIGURE 2.17 Returns on the S&P 500 during 2003 (top panel) and a normal curve
fitted to their histogram (bottom panel). The region area to the left of the 0.05 quantile
is shaded.
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returns during 2003. The average return during this period was 0.1% per day, and we
can see from the figure that daily fluctuations were as large as 3% or 4%. The lower
panel of the figure shows a histogram of the returns and a fitted normal density with
© = 0.001 and 0 = 0.01.

A financial company could use the fitted normal density in calculating its Value at
Risk (see Example D of Section 2.2). Using a time horizon of one day and a confidence
level of 95%, the VaR is the current investment in the index, V;, multiplied by the
negative of the 0.05 quantile of the distribution of returns. In this case, the quantile
can be calculated to be —0.0165, so the VaR is .0165V,. Thus, if V; is $10 million,
the VaR is $165,000. The company can have 95% “confidence” that its losses will
not exceed that amount on a given day. However, it should not be surprised if that
amount is exceeded about once in every 20 trading days. [ |

The Beta Density

The beta density is useful for modeling random variables that are restricted to the
interval [0, 1]:

_a+b ., b1
f(u) = F(a)l"(b)u (1 —u)’", O<uc<l

Figure 2.18 shows beta densities for various values of a and b. Note that the case
a = b = 1 is the uniform distribution. The beta distribution is important in Bayesian
statistics, as you will see later.

Functions of a Random Variable

Suppose that a random variable X has a density function f(x). We often need to find
the density function of ¥ = g(X) for some given function g. For example, X might
be the velocity of a particle of mass m, and we might be interested in the probability
density function of the particle’s kinetic energy, ¥ = %mX 2, Often, the density and
cdf of X are denoted by fyx and Fx; and those of Y, by fy and Fy. To illustrate
techniques for solving such a problem, we first develop some useful facts about the
normal distribution.

Suppose that X ~ N (i, 02) and that Y = aX +b, where a > 0. The cumulative
distribution function of Y is

Fy(y)=PX <y)
=P@X+b<y)

:p(xsy;b>
= r (557
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FIGURE 2.18 Beta density functions for various values of a and b: (a) a =2,b=2; (b)a =6,b=2;

(ca=6,b=6;and (d)a =.5 b=4.

Thus,

Up to this point, we have not used the assumption of normality at all, so this result
holds for a general continuous random variable, provided that Fy is appropriately
differentiable. If fx is a normal density function with parameters u and o, we find
that, after substitution,

) 1 1<y—b—au)2
e ao~/2m P17z ao
From this, we see that ¥ follows a normal distribution with parameters au + b
and ao.

The case for which a < 0 can be analyzed similarly (see Problem 57 in the
end-of-chapter problems), yielding the following proposition.

PROPOSITION A
If X ~ N(u,0?) and Y = aX + b, then Y ~ N(au + b, a’c?). [}

This proposition is quite useful for finding probabilities from the normal dis-
tribution. Suppose that X ~ N (i, o2) and we wish to find P(xy < X < x;) for
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some numbers xy and x;. Consider the random variable
X—n X u

7 =

o o o
Applying Proposition A witha = 1/o and b = —u /o, we see that Z ~ N (O, 1),
that is, Z follows a standard normal distribution. Therefore,

Fy(x) = P(X =x)

_p X—p _x—np
o - o

We thus have
P(xo < X <x1) = Fx(x1) — Fx(x0)

o) )

Thus, probabilities for general normal random variables can be evaluated in terms of
probabilities for standard normal random variables. This is quite useful, since tables
need to be made up only for the standard normal distribution rather than separately
for every pand o.

Scores on a certain standardized test, IQ scores, are approximately normally dis-
tributed with mean © = 100 and standard deviation o = 15. Here we are referring
to the distribution of scores over a very large population, and we approximate that
discrete cumulative distribution function by a normal continuous cumulative distri-
bution function. An individual is selected at random. What is the probability that his
score X satisfies 120 < X < 130?

We can calculate this probability by using the standard normal distribution as
follows:

120-100 X —100 130 — 100
P(120 < X < 130) = P < <

15 15 15
=P(133<Z<2)

where Z follows a standard normal distribution. Using a table of the standard normal
distribution (Table 2 of Appendix B), this probability is

P(133 < Z <2) = d(2) — d(1.33)
= 9772 — .9082
= .069

Thus, approximately 7% of the population will have scores in this range. [ |
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Let X ~ N(u, 0?), and find the probability that X is less than o away from w; that
is, find P(|X — u| < o).
This probability is

X—u
P(—o<X—-—u<o)=P|(—-1< <1
o
=P(-1<Z<1

where Z follows a standard normal distribution. From tables of the standard normal
distribution, this last probability is

P(1) —P(—1) = .68

Thus, a normal random variable is within 1 standard deviation of its mean with
probability .68. [ ]

We now turn to another example involving the normal distribution.

Find the density of X = Z?, where Z ~ N (0, 1).
Here, we have

Fx(x) =P(X <x)
=P(—/x<Z<x)
= O(Vx) — ©(—+/x)

We find the density of X by differentiating the cdf. Since ®’(x) = ¢ (x), the chain
rule gives

fx(x) = 1712 (Ux) + 1712 (—/x)
=x""2¢(V/x)

In the last step, we used the symmetry of ¢. Evaluating the last expression, we
find

X172

V2

We can recognize this as a gamma density by making use of a principle of general
utility. Suppose two densities are of the forms k;4(x) and k,h(x); then, because they
both integrate to 1, k; = k,. Now, comparing the form of f(x) given here to that of
the gamma density with « = A = %, we recognize by this reasoning that f(x) is
a gamma density and that T’ (%) = /m. This density is also called the chi-square
density with 1 degree of freedom. [ |

e/?, x>0

fx(x) =

As another example, let us consider the following.
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EXAMPLE D LetU be auniform random variable on [0, 1], and let V = 1/U. To find the density

of V, we first find the cdf:

Fy(v) = P(V <)

(L)

I
~
7~
=
%
[SENIE
~—

This expression is valid for v > 1; forv < 1, Fy(v) = 0. We can now find the density
by differentiation:

1
fr) ==, l<v<oo
v

Looking back over these examples, we see that we have gone through the same
basic steps in each case: first finding the cdf of the transformed variable, then dif-
ferentiating to find the density, and then specifying in what region the result holds.
These same steps can be used to prove the following general result.

PROPOSITION B

Let X be a continuous random variable with density f(x)andletY = g(X) where
g is a differentiable, strictly monotonic function on some interval /. Suppose that
f(x) =0if x isnotin /. Then Y has the density function

d
() = fxg ') ’d—g_l(y)‘
y

for y such that y = g(x) for some x, and fy(y) = 0if y # g(x) for any x in /.
Here g~ ! is the inverse function of g; thatis, g~ (y) = x if y = g(x). ]

For any specific problem, proceeding from scratch is usually easier than deci-
phering the notation and applying the proposition.

We conclude this section by developing some results relating the uniform dis-
tribution to other continuous distributions. Throughout, we consider a random vari-
able X, with density f and cdf F, where F is strictly increasing on some interval
I, F = 0tothe left of I, and F = 1 to the right of /. I may be a bounded interval
or an unbounded interval such as the whole real line. F~'(x) is then well defined
forx e I.
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PROPOSITION C
Let Z = F(X); then Z has a uniform distribution on [0, 1].

Proof
P(Z<2)=P(FX)<2)=PX<F'@Q)=FF '@) =z

This is the uniform cdf. |

PROPOSITION D
Let U be uniform on [0, 1], and let X = F~'(U). Then the cdf of X is F.

Proof

P(X<x)=P(F '(U)<x)=PU < Fx))=F(x) .

This last proposition is quite useful in generating pseudorandom numbers with
a given cdf F. Many computer packages have routines for generating pseudorandom
numbers that are uniform on [0, 1]. These numbers are called pseudorandom because
they are generated according to some rule or algorithm and thus are not “really”
random. Proposition D tells us that to generate random variables with cdf F, we just
apply F~! to uniform random numbers. This is quite practical as long as F~' can be
calculated easily.

Suppose that, as part of simulation study, we want to generate random variables from
an exponential distribution. For example, the performance of large queueing networks
is often assessed by simulation. One aspect of such a simulation involves generating
random time intervals between customer arrivals, which might be assumed to be
exponentially distributed. If we have access to a uniform random number generator,
we can apply Proposition D to generate exponential random numbers. The cdf is
F(t) =1 — e . F~! can be found by solving x = 1 — e~* for t:

eM=1—x
—At =log(1 —x)
t = —log(l —x)/A

Thus, if U is uniform on [0, 1], then T = —log(1 — U)/A is an exponential random
variable with parameter 1. This can be simplified slightly by noting that V. =1 - U
is also uniform on [0, 1] since

PV<vy=PQ-U<v)=PU=>1-v)=1—-(1—-v)=v
We may thus take 7 = — log(V)/A, where V is uniform on [0, 1]. [ ]
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2.4 Concluding Remarks

This chapter introduced the concept of a random variable, one of the fundamental
ideas of probability theory. A fully rigorous discussion of random variables requires
a background in measure theory. The development here is sufficient for the needs of
this course.

Discrete and continuous random variables have been defined, and it should be
mentioned that more general random variables can also be defined and are useful on
occasion. In particular, it makes sense to consider random variables that have both a
discrete and a continuous component. For example, the lifetime of a transistor might
be 0 with some probability p > 0 if it does not function at all; if it does function, the
lifetime could be modeled as a continuous random variable.

2.5 Problems

1. Suppose that X is a discrete random variable with P(X =0) = .25, P(X = 1) =
125, P(X = 2) =.125,and P(X = 3) = .5. Graph the frequency function and
the cumulative distribution function of X.

2. An experiment consists of throwing a fair coin four times. Find the frequency
function and the cumulative distribution function of the following random vari-
ables: (a) the number of heads before the first tail, (b) the number of heads
following the first tail, (c) the number of heads minus the number of tails, and
(d) the number of tails times the number of heads.

3. The following table shows the cumulative distribution function of a discrete
random variable. Find the frequency function.

k F (k)
0 0
1 .1
2 3
3 i
4 8
5 1.0

4. If X is an integer-valued random variable, show that the frequency function is
related to the cdf by p(k) = F(k) — F(k — 1).

5. Show that P(u < X < v) = F(v) — F(u) for any u and v in the cases that (a)
X is a discrete random variable and (b) X is a continuous random variable.

6. Let A and B be events, and let I, and Iz be the associated indicator random
variables. Show that

Iy = Ialp =min(ly, Ip)

and

Taup max(ly4, Ip)
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Find the cdf of a Bernoulli random variable.
Show that the binomial probabilities sum to 1.

For what values of p is a two-out-of-three majority decoder better than transmis-
sion of the message once?

Appending three extra bits to a 4-bit word in a particular way (a Hamming code)
allows detection and correction of up to one error in any of the bits. If each
bit has probability .05 of being changed during communication, and the bits
are changed independently of each other, what is the probability that the word
is correctly received (that is, O or 1 bit is in error)? How does this probability
compare to the probability that the word will be transmitted correctly with no
check bits, in which case all four bits would have to be transmitted correctly for
the word to be correct?

Consider the binomial distribution with n trials and probability p of success on
each trial. For what value of k is P(X = k) maximized? This value is called the
mode of the distribution. (Hint: Consider the ratio of successive terms.)

Which is more likely: 9 heads in 10 tosses of a fair coin or 18 heads in 20 tosses?

A multiple-choice test consists of 20 items, each with four choices. A student is
able to eliminate one of the choices on each question as incorrect and chooses
randomly from the remaining three choices. A passing grade is 12 items or more
correct.

a. What is the probability that the student passes?
b. Answer the question in part (a) again, assuming that the student can eliminate
two of the choices on each question.

Two boys play basketball in the following way. They take turns shooting and
stop when a basket is made. Player A goes first and has probability p; of mak-
ing a basket on any throw. Player B, who shoots second, has probability p, of
making a basket. The outcomes of the successive trials are assumed to be inde-
pendent.

a. Find the frequency function for the total number of attempts.
b. What is the probability that player A wins?

Two teams, A and B, play a series of games. If team A has probability .4 of
winning each game, is it to its advantage to play the best three out of five games
or the best four out of seven? Assume the outcomes of successive games are
independent.

Show that if n approaches co and r/n approaches p and m is fixed, the hyper-
geometric frequency function tends to the binomial frequency function. Give a
heuristic argument for why this is true.

Suppose that in a sequence of independent Bernoulli trials, each with probability
of success p, the number of failures up to the first success is counted. What is
the frequency function for this random variable?

Continuing with Problem 17, find the frequency function for the number of
failures up to the rth success.
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19. Find an expression for the cumulative distribution function of a geometric random
variable.
20. If X is a geometric random variable with p = .5, for what value of k is

21.

22,

23.

24.

25.

26.

27.

28.

P(X < k)~ .99?

If X is a geometric random variable, show that
PX>n+k—-1X>n—-1)=P(X > k)

In light of the construction of a geometric distribution from a sequence of inde-
pendent Bernoulli trials, how can this be interpreted so that it is “obvious™?

Three identical fair coins are thrown simultaneously until all three show the same
face. What is the probability that they are thrown more than three times?

In a sequence of independent trials with probability p of success, what is the
probability that there are r successes before the kth failure?

(Banach Match Problem) A pipe smoker carries one box of matches in his left
pocket and one box in his right. Initially, each box contains n matches. If he
needs a match, the smoker is equally likely to choose either pocket. What is the
frequency function for the number of matches in the other box when he first
discovers that one box is empty?

The probability of being dealt a royal straight flush (ace, king, queen, jack, and
ten of the same suit) in poker is about 1.3 x 1073, Suppose that an avid poker
player sees 100 hands a week, 52 weeks a year, for 20 years.

a. What is the probability that she is never dealt a royal straight flush dealt?
b. What is the probability that she is dealt exactly two royal straight flushes?

The university administration assures a mathematician thathe has only 1 chance in
10,000 of being trapped in a much-maligned elevator in the mathematics building.
If he goes to work 5 days a week, 52 weeks a year, for 10 years, and always rides
the elevator up to his office when he first arrives, what is the probability that
he will never be trapped? That he will be trapped once? Twice? Assume that
the outcomes on all the days are mutually independent (a dubious assumption in
practice).

Suppose that a rare disease has an incidence of 1 in 1000. Assuming that members
of the population are affected independently, find the probability of k cases in a
population of 100,000 for k =0, 1, 2.

Let po, p1, - - ., p, denote the probability mass function of the binomial distribu-
tion with parameters n and p. Letg = 1 — p. Show that the binomial probabilities
can be computed recursively by py = ¢" and

_ n—k+1p

1, k=1,2,...,
kq Pi—1 n

Pk

Use this relation to find P(X < 4) for n = 9000 and p = .0005.
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Show that the Poisson probabilities py, py, ... can be computed recursively by
po = exp(—X) and
A
P = 3Pt k=1,2,...

Use this scheme to find P(X < 4) for A = 4.5 and compare to the results of
Problem 28.

Suppose that in a city, the number of suicides can be approximated by a Poisson

process with A = .33 per month.

a. Find the probability of k suicides in a year for k = 0, 1, 2,.... What is the
most probable number of suicides?

b. What is the probability of two suicides in one week?

Phone calls are received at a certain residence as a Poisson process with parameter
A = 2 per hour.

a. If Diane takes a 10-min. shower, what is the probability that the phone rings
during that time?

b. How long can her shower be if she wishes the probability of receiving no
phone calls to be at most .5?

For what value of k is the Poisson frequency function with parameter A maxi-
mized? (Hint: Consider the ratio of consecutive terms.)

Let F(x) = 1 —exp(—axf) forx > 0,a > 0,8 > 0,and F(x) =0 for x < 0.
Show that F is a cdf, and find the corresponding density.

Let f(x) = (1 +ax)/2 for =1 < x < 1 and f(x) = 0 otherwise, where
—1 < o < 1. Show that f is a density, and find the corresponding cdf. Find the
quartiles and the median of the distribution in terms of «.

Sketch the pdf and cdf of a random variable that is uniform on [—1, 1].

If U is a uniform random variable on [0, 1], what is the distribution of the random
variable X = [nU], where [¢] denotes the greatest integer less than or equal to 7?

A line segment of length 1 is cut once at random. What is the probability that the
longer piece is more than twice the length of the shorter piece?

If f and g are densities, show that «f + (1 — «)g is a density, where 0 < o < 1.

The Cauchy cumulative distribution function is
1
F(x) = -+ —tan" " (x), —00 < X < 00
2 7w

a. Show that this is a cdf.
b. Find the density function.
c. Find x such that P(X > x) = .1.

Suppose that X has the density function f(x) = cx*for0 < x < land f(x) =0
otherwise.

a. Find c. b. Find the cdf. c. Whatis P(.1 < X < .5)?
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41
42

43.

44.

45.

46.
47.
48.
49.

50.

51.

. Find the upper and lower quartiles of the exponential distribution.

. Find the probability density for the distance from an event to its nearest neighbor
for a Poisson process in the plane.

Find the probability density for the distance from an event to its nearest neighbor
for a Poisson process in three-dimensional space.

Let T be an exponential random variable with parameter A. Let X be a discrete
random variable defined as X = kifk < T < k+ 1,k =0,1,....Find the
frequency function of X.

Suppose that the lifetime of an electronic component follows an exponential
distribution with A = .1.

a. Find the probability that the lifetime is less than 10.

b. Find the probability that the lifetime is between 5 and 15.

c. Find ¢ such that the probability that the lifetime is greater than ¢ is .01.

T is an exponential random variable, and P(T < 1) = .05. Whatis A?
If o > 1, show that the gamma density has a maximum at (o« — 1)/A.
Show that the gamma density integrates to 1.

The gamma function is a generalized factorial function.

a. Show that I'(1) = 1.

b. Show that I'(x 4+ 1) = xI'(x). (Hint: Use integration by parts.)
c. Conclude thatI'(n) = (n — 1)!, forn =1,2,3,....

d. Use the fact that F(%) = /7 to show that, if n is an odd integer,

")

r(3) - el

Show by a change of variables that

I'(x) = 2/ 2 e 4y
0

o0
Lt
=/ e'e™® dt
—00

Show that the normal density integrates to 1. (Hint: First make a change of
variables to reduce the integral to that for the standard normal. The problem is
then to show that ffooo exp(—x2/2) dx = ~/27. Square both sides and reexpress
the problem as that of showing

(/w exp(—x2/2) dx> </OO exp(—y?/2) dy) =2

Finally, write the product of integrals as a double integral and change to polar
coordinates.)
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Suppose that in a certain population, individuals’ heights are approximately nor-
mally distributed with parameters © = 70 and o = 3 in.

a. What proportion of the population is over 6 ft. tall?
b. What is the distribution of heights if they are expressed in centimeters? In
meters?

Let X be a normal random variable with 4 = 5and o = 10. Find (a) P(X > 10),
(b) P(—20 < X < 15), and (c) the value of x such that P(X > x) = .05.

If X ~ N(u, 0?), show that P(|X — p| < .6750) = .5.

X ~ N(u,o?), find the value of ¢ in terms of o such that P(u —c < X <
uw—+c)=.95.

If X ~ N (0, 0%), find the density of ¥ = |X|.

X ~N(u,0*)andY = aX +b, wherea < 0, show that Y ~ N(ap+b, a*c?).
If U is uniform on [0, 1], find the density function of JU.

If U is uniform on [—1, 1], find the density function of U?.

Find the density function of ¥ = e, where Z ~ N (i, o?). This is called the
lognormal density, since log Y is normally distributed.

Find the density of ¢cX when X follows a gamma distribution. Show that only A
is affected by such a transformation, which justifies calling A a scale parameter.

Show that if X has a density function fy and Y = aX + b, then
1 y—>b
fr(y) = mfx ( )

a

Suppose that ® follows a uniform distribution on the interval [—7x /2, 7 /2]. Find
the cdf and density of tan ®.

A particle of mass m has a random velocity, V, which is normally distributed
with parameters 1 = 0 and o. Find the density function of the kinetic energy,
E = %m V2.

How could random variables with the following density function be generated
from a uniform random number generator?

14+ ax

f)=——,

Let f(x) = ax ' for x > 1 and f(x) = O otherwise, where « is a positive
parameter. Show how to generate random variables from this density from a
uniform random number generator.

The Weibull cumulative distribution function is
F(x)=1—e_<"/")ﬁ, x>0, a >0, B >0

a. Find the density function.
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b. Show that if W follows a Weibull distribution, then X = (W /«)? follows an
exponential distribution.

¢. How could Weibull random variables be generated from a uniform random
number generator?

If the radius of a circle is an exponential random variable, find the density function
of the area.

If the radius of a sphere is an exponential random variable, find the density
function of the volume.

Let U be a uniform random variable. Find the density function of V = U™,
o > 0. Compare the rates of decrease of the tails of the densities as a function of
«. Does the comparison make sense intuitively?

This problem shows one way to generate discrete random variables from a uni-
form random number generator. Suppose that F' is the cdf of an integer-valued
random variable; let U be uniform on [0, 1]. Define a random variable Y = k if
F(k —1) < U < F(k). Show that Y has cdf F. Apply this result to show how
to generate geometric random variables from uniform random variables.

One of the most commonly used (but not one of the best) methods of gener-
ating pseudorandom numbers is the linear congruential method, which works
as follows. Let x( be an initial number (the “seed”). The sequence is generated
recursively as

x, = (ax,—1 +c¢) mod m

a. Choose values of a, ¢, and m, and try this out. Do the sequences “look”
random?

b. Making good choices of a, ¢, and m involves both art and theory. The follow-
ing are some values that have been proposed: (1) a =69069, c =0, m = 231,
(2)a=65539,c=0,m =23". The latter is an infamous generator called
RANDU. Try out these schemes, and examine the results.



3.1

CHAPTER 3

Joint Distributions

Introduction

This chapter is concerned with the joint probability structure of two or more random
variables defined on the same sample space. Joint distributions arise naturally in many
applications, of which the following are illustrative:

* In ecological studies, counts of several species, modeled as random variables, are

often made. One species is often the prey of another; clearly, the number of predators

will be related to the number of prey.

The joint probability distribution of the x, y, and z components of wind velocity

can be experimentally measured in studies of atmospheric turbulence.

The joint distribution of the values of various physiological variables in a population

of patients is often of interest in medical studies.

* A model for the joint distribution of age and length in a population of fish can be used
to estimate the age distribution from the length distribution. The age distribution is
relevant to the setting of reasonable harvesting policies.

The joint behavior of two random variables, X and Y, is determined by the
cumulative distribution function

Flx,y)=P(X =x,Y =)

regardless of whether X and Y are continuous or discrete. The cdf gives the probability
that the point (X, Y) belongs to a semi-infinite rectangle in the plane, as shown in
Figure 3.1. The probability that (X, Y) belongs to a given rectangle is, from Figure 3.2,

Pxi <X <xo,y1 <Y < y) = F(xp, y2) — F(xp, y1) — F(x1, y2)
+ F(xi, y1)
71
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»2

V1

FIGURE 3.1 F(a, b) gives the probability of the FIGURE 3.2 The probability of the shaded

shaded rectangle.

3.2

rectangle can be found by subtracting from the
probability of the (semi-infinite) rectangle having
the upper-right corner (x», y») the probabilities of
the (x1, y2) and (x,, y1) rectangles, and then adding
back in the probability of the (x1, y4) rectangle.

The probability that (X, Y) belongs to a set A, for a large enough class of sets
for practical purposes, can be determined by taking limits of intersections and unions
of rectangles. In general, if X1, ..., X, are jointly distributed random variables, their
joint cdf is

F(-xla-XZ?'-"xn) =P(X1 sxlaxz §x27-"?Xn S-xll)
Two- and higher-dimensional versions of density functions and frequency func-

tions exist. We will start with a detailed description of such functions for the discrete
case, since it is the easier one to understand.

Discrete Random Variables

Suppose that X and Y are discrete random variables defined on the same sample
space and that they take on values xi, x, ..., and yy, y,, ..., respectively. Their
joint frequency function, or joint probability mass function, p(x, y), is

pxi,yj))=PX=x,Y =y
A simple example will illustrate this concept. A fair coin is tossed three times; let X
denote the number of heads on the first toss and Y the total number of heads. From

the sample space, which is

Q = {hhh, hht, hth, htt,thh, tht, tth, ttt}
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we see that the joint frequency function of X and Y is as given in the following table:

(=)

O ®I—
0|— o0t
0 oo|—
o=

Thus, for example, p(0,2) = P(X =0, Y = 2) = . Note that the probabilities
in the preceding table sum to 1.
Suppose that we wish to find the frequency function of Y from the joint frequency
function. This is straightforward:
pr(0) =P =0)
=PY=0,X=0+PY=0,X=1)

= —40

OO | — OO | =

pr(1) =P =1)
—PY=1,X=0+P¥=1,X=1)

oo | W

In general, to find the frequency function of Y, we simply sum down the appropriate
column of the table. For this reason, py is called the marginal frequency function
of Y. Similarly, summing across the rows gives

px(x) =Y p(x,y)

which is the marginal frequency function of X.
The case for several random variables is analogous. If X, ..., X,, are discrete
random variables defined on the same sample space, their joint frequency function is

p(X],...,xm) = P(Xl les'-"Xm :_xm)
The marginal frequency function of X, for example, is

Px, (x1) = Z p(x1, X2, ooy X))
X
The two-dimensional marginal frequency function of X; and X,, for example, is

Pxix(en X) = Y plri, Xa, .o, Xn)

X3 X

Multinomial Distribution
The multinomial distribution, an important generalization of the binomial distribution,
arises in the following way. Suppose that each of n independent trials can result in
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one of r types of outcomes and that on each trial the probabilities of the » outcomes

are pi, p2, ..., pr. Let N; be the total number of outcomes of type i in the n trials,
i =1,...,r.Tocalculate the joint frequency function, we observe that any particular
sequence of trials giving rise to Ny = ny, N, = n,,..., N, = n, occurs with

probability pi' p5* - - - p"r. From Proposition C in Section 1.4.2, we know that there
are n!/(ny!ny!---n,!) such sequences, and thus the joint frequency function is

n ny __no n,
p(n17""nr):( >pl p2...pr
ny---n,

The marginal distribution of any particular N; can be obtained by summing the joint
frequency function over the other n ;. This formidable algebraic task can be avoided,
however, by noting that N; can be interpreted as the number of successes in n trials,
each of which has probability p; of success and 1 — p; of failure. Therefore, N; is a
binomial random variable, and

n
pw, (1) = < )P?'(l —p)"
n;

The multinomial distribution is applicable in considering the probabilistic prop-
erties of a histogram. As a concrete example, suppose that 100 independent ob-
servations are taken from a uniform distribution on [0, 1], that the interval [0, 1] is

partitioned into 10 equal bins, and that the counts n, . . . , nj( in each of the 10 bins are
recorded and graphed as the heights of vertical bars above the respective bins. The joint
distribution of the heights is multinomial with n = 100 and p; = .1,i =1, ..., 10.

Figure 3.3 shows four histograms constructed in this manner from a pseudorandom

16 20
12 15
§ =
Z 3 210
@] @]
4 5
0 0
0 2 4 .6 8 1.0 0 2 4 6 8 1.0
X
(a) * (b)
16 20 +
12 15+
£ £ F
Z 8 10|
Q Q - -
4 5F
0 0
0 2 4 .6 8 1.0 0 2 4 .6 8 1.0
X X
© ()

FIGURE 3.3 Four histograms, each formed from 100 independent uniform random
numbers.
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number generator; the figure illustrates the sort of random fluctuations that can be
expected in histograms. [ ]

Continuous Random Variables

Suppose that X and Y are continuous random variables with a joint cdf, F (x, y). Their
joint density function is a piecewise continuous function of two variables, f(x, y).
The density function f (x, y) is nonnegative and [°. [*° f(x,y)dy dx = 1. For
any “reasonable” two-dimensional set A

P((X,Y)e A) = //f(x,y) dy dx
A

In particular, if A = {(X,Y)|X <xand Y <y},

F(x,y)=/x /y fu,v) dvdu

From the fundamental theorem of multivariable calculus, it follows that
2

flx,y) =

F b
220y (x,y)

wherever the derivative is defined.
For small 8, and §,, if f is continuous at (x, y),

x40y v+
P(x§X§x+5x,y§Y§y+5y)=/ / f,v)dvdu
X y
~ f(x,y)8:8,

Thus, the probability that (X, Y) is in a small neighborhood of (x, y) is proportional
to f(x, y). Differential notation is sometimes useful:

Px<X<x+dx,y<Y <y+dy)= f(x,y)dxdy

Consider the bivariate density function

12
f(x,y)=7(x2+xy), 0<x<1, 0<y<lI

which is plotted in Figure 3.4. P(X > Y) can be found by integrating f over the set

{,M0=<y=<x<1}
12 /e )
- (x"+xy) dy dx
o Jo
9

= _ |
14

P(X >Y)
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FIGURE 3.4 The density function f(x,y) = 2(x* +xy), 0<x <1, 0<y<1.

The marginal cdf of X, or Fy, is
Fx(x) = P(X = x)

lim F(x,y)
y—00

/ ' / Fu,y) dy du

From this, it follows that the density function of X alone, known as the marginal
density of X, is

fx(x)ZF)/((x)Z/ Flxy) dy

In the discrete case, the marginal frequency function was found by summing the joint
frequency function over the other variable; in the continuous case, it is found by
integration.

Continuing Example A, the marginal density of X is

12 !
=2 / (o + xy) dy
0

_12(2+X)
—7 T3

A similar calculation shows that the marginal density of Y is fy(y) =
23 +y/2). ]

For several jointly continuous random variables, we can make the obvious gen-
eralizations. The joint density function is a function of several variables, and the
marginal density functions are found by integration. There are marginal density
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functions of various dimensions. Suppose that X, Y, and Z are jointly continuous
random variables with density function f(x, y, z). The one-dimensional marginal
distribution of X is

fx(X)=/ / Flx.y.2) dy dz

and the two-dimensional marginal distribution of X and Y is

Sxy(x, y) = / fx,y,2)dz

Farlie-Morgenstern Family
If F(x) and G(y) are one-dimensional cdfs, it can be shown that, for any « for which
loe] <1,

H(x,y) = F(xX)G){l + o[l = F)I[1 = G}

is a bivariate cumulative distribution function. Because lim F(x) = lim F(y) =1,
the marginal distributions are e e

H(x,00) = F(x)

H(oo,y) = G(y)
In this way, an infinite number of different bivariate distributions with given marginals
can be constructed.

As an example, we will construct bivariate distributions with marginals that are

uniform on [0, 1] [F(x) = x,0 < x <1, and G(y) = y,0 < y < 1]. First, with
o = —1, we have

H(x,y) = xy[l — (1 —x)(1—=y)]
:x2y+y2x—x2y2, 0<x<l, 0<y<l1

The bivariate density is
2
h(x,y) = H(x,
(x, y) oxdy (x,y)

=2x + 2y —4xy, 0<x<l, 0<y=<l1

The density is shown in Figure 3.5. Perhaps you can imagine integrating over y
(pushing all the mass onto the x axis) to produce a marginal uniform density for x.
Next, ifa =1,

H(x,y) =xy[l+ (1 —x)(1—y)]
=2xy—x2y—y2x+x2y2, 0<x<l1, 0<y<l1
The density is
h(x,y) =2 —2x — 2y +4xy, 0<x<l, 0<y<l1

This density is shown in Figure 3.6.
We just constructed two different bivariate distributions, both of which have
uniform marginals. ]
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FIGURE 3.5 The joint density h(x, y) = 2x + 2y — 4xy, where 0 < x < 1 and
0 < y < 1, which has uniform marginal densities.

FIGURE 3.6 The jointdensity h(x,y) =2 —2x — 2y + 4xy, where 0 < x < 1 and
0 < y < 1, which has uniform marginal densities.

A copula is a joint cumulative distribution function of random variables that have
uniform marginal distributions. The functions H (x, y) in the preceding example are
copulas. Note that a copula C(u, v) is nondecreasing in each variable, because it
is a cdf. Also, P(U < u) = C(u,1) = u and C(1,v) = v, since the marginal
distributions are uniform. We will restrict ourselves to copulas that have densities, in
which case the density is

2

ouov

C(u,v) >0

c(u,v) =
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Now, suppose that X and Y are continuous random variables with cdfs Fy (x)
and Fy(y). Then U = Fx(x) and V = Fy(y) are uniform random variables (Propo-
sition 2.3C). For a copula C(u, v), consider the joint distribution defined by

Fxy(x,y) = C(Fx(x), Fy(y))

Since C(Fx(x), 1) = Fx(x), the marginal cdfs corresponding to Fxy are Fy(x) and
Fy (y). Using the chain rule, the corresponding density is

Jxy (x,y) = c(Fx(x), Fy () fx(x0) fr (y)

This construction points out that from the ingredients of two marginal distributions
and any copula, a joint distribution with those marginals can be constructed. It is
thus clear that the marginal distributions do not determine the joint distribution. The
dependence between the random variables is captured in the copula. Copulas are not
just academic curiousities—they have been extensively used in financial statistics in
recent years to model dependencies in the returns of financial instruments.

Consider the following joint density:

Ale™M, 0<x<y,A>0
0, elsewhere

f(x,y)={

This joint density is plotted in Figure 3.7. To find the marginal densities, it is helpful
to draw a picture showing where the density is nonzero to aid in determining the limits
of integration (see Figure 3.8).

1

75

S fley)
25

FIGURE 3.7 The joint density of Example D.
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FIGURE 3.8 The joint density of Example D is nonzero over the shaded region of
the plane.

First consider the marginal density fyx(x) = ffooo fxy(x, y)dy.Since f(x,y)=0
forx >y,

fx(x) = / Aze’”dy = Le M, x>0

and we see that the marginal distribution of X is exponential. Next, because
fxr(x,y)=0forx <0Oand x > y,

y
) = / e ™dx = Aye™, y>0
0

The marginal distribution of Y is a gamma distribution. [ |

In some applications, it is useful to analyze distributions that are uniform over
some region of space. For example, in the plane, the random point (X, Y is uniform
over a region, R, if forany A C R,

|A]

P((X,Y)eA) = —
(X, Y) € 4) IR]

where | | denotes area.

A point is chosen randomly in a disk of radius 1. Since the area of the disk is 7,

%, if x24+y2<1
0, otherwise

f(x,y)={
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We can calculate the distribution of R, the distance of the point from the origin. R < r
if the point lies in a disk of radius r. Since this disk has area 777,

2
T
Fr) = P(R<r) =" =
T

The density function of R is thus fr(r) =2r,0 <r < 1.
Let us now find the marginal density of the x coordinate of the random point:

fx(x)=/ e y) dy
| Ve
T *\/@
:;\/l—xz, —1<x<1

Note that we chose the limits of integration carefully; outside these limits the joint
density is zero. (Draw a picture of the region over which f(x, y) > 0 and indicate
the preceding limits of integration.) By symmetry, the marginal density of Y is

2
fy(y)=;\/1—y2, -l<y<l u

Bivariate Normal Density
The bivariate normal density is given by the complicated expression

1 exp(— 1 [(x — px)? n (y — uy)?
2woxoyy/1 — p? 2(1 = p?) 2 7

O Oy
_2P(X —ux)(y — MY)])
OxOy

flx,y) =

One of the earliest uses of this bivariate density was as a model for the joint distribution
of the heights of fathers and sons. The density depends on five parameters:

—00 < [y < 00 —00 < Uy < 00
oy >0 oy >0
—1<p<l1

The contour lines of the density are the lines in the xy plane on which the joint density
is constant. From the preceding equation, we see that f(x, y) is constant if
(= pux)® O —m)? 200 — w0y = py)

3 + 3 = constant
Ox Oy OxOy

The locus of such points is an ellipse centered at (i y, py). If p = 0, the axes of the
ellipse are parallel to the x and y axes, and if p = 0, they are tilted. Figure 3.9 shows
several bivariate normal densities, and Figure 3.10 shows the corresponding elliptical
contours.
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FIGURE 3.9 Bivariate normal densities with uy = uy =0 and oy =0y =1 and (a) p
() p=.6,()p=.9.

The marginal distributions of X and Y are N(ux, o3) and N(uy, 07), respec-
tively, as we will now demonstrate. The marginal density of X is

fx(x) = / Sfxr(x,y) dy

Making the changes of variables u = (x — uy)/ox and v = (y — uy)/oy gives us

exp (u? +v* = 2puv)| dv

1 1
Sx() = 2woxy/1 — p? /—oo 201 - 0?)
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FIGURE 3.10 The elliptical contours of the bivariate normal densities of Figure 3.9.

To evaluate this integral, we use the technique of completing the square. Using the
identity

w4+ — 2puv = (v — ,ou)2 +u’d - pz)
we have

1 —en [ { 1
— ¢ exp |~ 5 — ¢
27dex/1—,02 —o0 2(1_10)
Finally, recognizing the integral as that of a normal density with mean pu and variance
(1 — p?), we obtain

fx(x) = (v — pu)*| dv

1 —(1/2) [(X—L )2/62}

(X) — e 1/ X X
fX OxA 2

which is a normal density, as was to be shown. Thus, for example, the marginal

distributions of x and y in Figure 3.9 are all standard normal, even though the joint

distributions of (a)—(d) are quite different from each other. [ |

We saw in our discussion of copulas earlier in this section that marginal densities
do not determine joint densities. For example, we can take both marginal densities
to be normal with parameters 4 = 0 and ¢ = 1 and use the Farlie-Morgenstern
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0.2
0.15

flx,y) 0.1
0.05

FIGURE 3.11 A bivariate density that has normal marginals but is not bivariate
normal. The contours of the density shown in the xy plane are not elliptical.

copula with density c(u, v) = 2 — 2u — 2v 4 4uv. Denoting the normal density and
cumulative distribution functions by ¢ (x) and ®(x), the bivariate density is

Fx,y) =2 =20x) =20(y) +4P(x)P(y)(x)¢(y)

This density and its contours are shown in Figure 3.11. Note that the contours are not
elliptical. This bivariate density has normal marginals, but it is not a bivariate normal
density.

Independent Random Variables

DEFINITION

Random variables X, X», ..., X, are said to be independent if their joint cdf
factors into the product of their marginal cdf’s:

F(x1,x2, ..., %,) = Fx, (x1)Fx,(x2) - - - Fx, (x,)

for all x1, x2, ..., x,. [ |

The definition holds for both continuous and discrete random variables. For
discrete random variables, it is equivalent to state that their joint frequency function
factors; for continuous random variables, it is equivalent to state that their joint density
function factors. To see why this is true, consider the case of two jointly continuous
random variables, X and Y. If they are independent, then

F(x,y) = Fx(x)Fy(y)
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and taking the second mixed partial derivative makes it clear that the density function
factors. On the other hand, if the density function factors, then the joint cdf can be
expressed as a product:

x y
F(x,y) =/ / Sx ) fr(v) dv du

- [ / Fr(w) du] [ / Ao dv] — Py (0)Fy(y)

It can be shown that the definition implies that if X and Y are independent, then
P(Xe A, YeB)=P(XeAPY e€B)

It can also be shown that if g and /& are functions, then Z = g(X) and W = h(Y) are
independent as well. A sketch of an argument goes like this (the details are beyond
the level of this course): We wish to find P(Z < z, W < w). Let A(z) be the set of
x such that g(x) < z, and let B(w) be the set of y such that 2(y) < w. Then
P(Z <z, W =w) =P(X € A(2), Y € B(w))
= P(X € A(z))P(Y € B(w))
=P(Z <2)P(W = w)

Suppose that the point (X, Y) is uniformly distributed on the square S = {(x, y) |
—1/2<x<1/2,—-1/2 <y < 1/2}: fxy(x,y) = 1for (x, y) in S and O elsewhere.
Make a sketch of this square. You can visualize that the marginal distributions of X
and Y are uniform on [—1/2, 1/2]. For example, the marginal density at a point x,
—1/2 < x < 1/21isfound by integrating (summing) the joint density over the vertical
line that meets the horizontal axis at x. Thus, fx(x) = 1,—1/2 < x < 1/2 and
fr(y) = 1,and — 1/2 < y < 1/2. The joint density is equal to the product of the
marginal densities, so X and Y are independent. You should be able to see from our
sketch that knowing the value of X gives no information about the possible values
of Y. |

Now consider rotating the square of the previous example by 90° to form a diamond.
Sketch this diamond. From the sketch, you can see that the marginal density of X is
nonnegative for —1/2 < x < 1/2 as before, but it is not uniform, and similarly for
the marginal density of Y. Thus, for example, fx(.9) > 0 and fy(.9) > 0. But from
the sketch you can also see that fyy(.9,.9) = 0. Thus, X and Y are not independent.
Finally, the sketch shows you that knowing the value of X— for example, X = .9—
constrains the possible values of Y. u
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Farlie-Morgenstern Family

From Example C in Section 3.3, we see that X and Y are independent only if « = 0,
since only in this case does the joint cdf H factor into the product of the marginals F
and G. [ ]

If X and Y follow a bivariate normal distribution (Example F from Section 3.3)
and p = 0, their joint density factors into the product of two normal densities, and
therefore X and Y are independent. ]

Suppose that a node in a communications network has the property that if two packets
of information arrive within time 7 of each other, they “collide” and then have to be
retransmitted. If the times of arrival of the two packets are independent and uniform
on [0, T'], what is the probability that they collide?

The times of arrival of two packets, 7} and 75, are independent and uniform on
[0, T'], so their joint density is the product of the marginals, or

1
ft,n) = T2

for ¢, and t, in the square with sides [0, T']. Therefore, (7}, T5) is uniformly distributed
over the square. The probability that the two packets collide is proportional to the
area of the shaded strip in Figure 3.12. Each of the unshaded triangles of the figure
has area (T — 7)?/2, and thus the area of the shaded areais 7% — (T — 7)2. Integrating
f(t1, 1) over this area gives the desired probability: 1 — (1 — 7/T)>. [ |

5]

5
T T

FIGURE 3.12 The probability that the two packets collide is proportional to the
area of the shaded region |t; — ]| <
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Conditional Distributions

The Discrete Case

If X and Y are jointly distributed discrete random variables, the conditional probability
that X = x; given that Y = y; is, if py(y;) > 0,

PX=x,Y=y;)

PY =y))
_ Pxy(xi,y))
py(y j)

This probability is defined to be zero if py(y;) = 0. We will denote this conditional
probability by px|y (x|y). Note that this function of x is a genuine frequency function

since it is nonnegative and sums to 1 and that py;x(y|x) = py(y) if X and Y are
independent.

P(X=xlY =y;) =

We return to the simple discrete distribution considered in Section 3.2, reproducing
the table of values for convenience here:

=
(=) <
[\)
W

S wl—
(=)

o0|— oolto
o0t oo|—
o=

The conditional frequency function of X given ¥ = 11is

2 9
B
pxy (0[1) = 3 = g
B
1
3 1
pxy(l1) = 5 =~ u
3 3

The definition of the conditional frequency function just given can be reexpressed
as

Pxy(x,y) = pxjr (x]y) py ()

(the multiplication law of Chapter 1). This useful equation gives arelationship between
the joint and conditional frequency functions. Summing both sides over all values of
y, we have an extremely useful application of the law of total probability:

px(®) =Y pxyr (x[y)pyr ()
-
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Suppose that a particle counter is imperfect and independently detects each incoming
particle with probability p. If the distribution of the number of incoming particles in
a unit of time is a Poisson distribution with parameter A, what is the distribution of
the number of counted particles?

Let N denote the true number of particles and X the counted number. From the
statement of the problem, the conditional distribution of X given N = n is binomial,
with n trials and probability p of success. By the law of total probability,

P(X=k =Y P(N=nP(X=kN =n)

n=0
Ve —A
= Z ( )p (1= p)*

()\p)k —A n k(l - )n k
Z (n —k)!

n=k
A =AM (1— p)
_ (lf‘) e,xz ( .'P)
! o J!
_ ()»P)k ot r1=P)
k!
k
_ Gp"
k!
We see that the distribution of X is a Poisson distribution with parameter Ap. This
model arises in other applications as well. For example, N might denote the number
of traffic accidents in a given time period, with each accident being fatal or nonfatal;
X would then be the number of fatal accidents. [ |

The Continuous Case

In analogy with the definition in the preceding section, if X and Y are jointly contin-
uous random variables, the conditional density of ¥ given X is defined to be

Sxy(x,y)

Sx(x)
if 0 < fx(x) < o0, and 0 otherwise. This definition is in accord with the result to
which a differential argument would lead. We would define fyx(y|x) dy as P(y <
Y <y+dylx < X <x+dx) and calculate

’ d d ’
P(y§Y§y+dy|x§X§x+dx):fXY(x y) dx y:fXY(x y)dy

fx(x) dx Jx(x)
Note that the rightmost expression is interpreted as a function of y, x being fixed.
The numerator is the joint density fxy(x, y), viewed as a function of y for fixed x:
you can visualize it as the curve formed by slicing through the joint density function

Srix(ylx) =
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perpendicular to the x axis. The denominator normalizes that curve to have unit
area.

The joint density can be expressed in terms of the marginal and conditional
densities as follows:

Fxy(x, ) = frix(v]x) fx (x)
Integrating both sides over x allows the marginal density of ¥ to be expressed as

fr(y) = / fy\x()’|x)fx(x) dx

which is the law of total probability for the continuous case.

In Example D in Section 3.3, we saw that

Fxr(x,y) = 2%, O<x=<y
Jx(x) = re ™, x>0

fr(y) =a%ye™, y=>0

Let us find the conditional densities. Before doing the formal calculations, it is in-
formative to examine the joint density for x and y, respectively, held constant. If x
is constant, the joint density decays exponentially in y for y > x; if y is constant,
the joint density is constant for 0 < x < y. (See Figure 3.7.) Now let us find the
conditional densities according to the preceding definition. First,

)\‘Ze—)»y

rerx

frix(ylx) = =r Yy zx
The conditional density of ¥ given X = x is exponential on the interval [x, 00).
Expressing the joint density as

fxy(& y) = fy|x(y|x)fx(x)

we see that we could generate X and Y according to fxy in the following way: First,
generate X as an exponential random variable ( fx), and then generate Y as another
exponential random variable ( fy|x) on the interval [x, co). From this representation,
we see that Y may be interpreted as the sum of two independent exponential random
variables and that the distribution of this sum is gamma, a fact that we will derive
later by a different method.
Now,
A 1
X = = —, 0<x<
Sfxir (x|y) Wye y Xz

The conditional density of X given ¥ = y is uniform on the interval [0, y]. Finally,
expressing the joint density as

fxr(x,y) = fxw(xb’)fy()’)
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we see that alternatively we could generate X and Y according to the density fxy by
first generating Y from a gamma density and then generating X uniformly on [0, y].
Another interpretation of this result is that, conditional on the sum of two independent
exponential random variables, the first is uniformly distributed. ]

Stereology

In metallography and other applications of quantitative microscopy, aspects of a three-
dimensional structure are deduced from studying two-dimensional cross sections.
Concepts of probability and statistics play an important role (DeHoff and Rhines
1968). In particular, the following problem arises. Spherical particles are dispersed
in a medium (grains in a metal, for example); the density function of the radii of
the spheres can be denoted as fz(r). When the medium is sliced, two-dimensional,
circular cross sections of the spheres are observed; let the density function of the radii
of these circles be denoted by fx(x). How are these density functions related?

-

FIGURE 3.13 A plane slices a sphere of radius r at a distance H from its center,
producing a circle of radius x.

To derive the relationship, we assume that the cross-sectioning plane is chosen
at random, fix R = r, and find the conditional density fxz(x|r). As shown in
Figure 3.13, let H denote the distance from the center of the sphere to the planar cross
section. By our assumption, H is uniformly distributed on [0, r],and X = +/r2 — H2.
We can thus find the conditional distribution of X given R = r:

Fxjr(x|r) = P(X < x)
= P(\/r?— H?<x)
=P(H > \Vr?—x?
L)

=1—-— 0<x<r
r
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Differentiating, we find

Sxir(xlr) = , O0<x=<r
r

r2 — x2

The marginal density of X is, from the law of total probability,
fx(x) = / Txir(x|r) fr(r) dr

o X
= ———=fr(r) dr
/x ra/r? — x?

[The limits of integration are x and oo since forr < x, fx g (x|r) = 0.] This equation
is called Abel’s equation. In practice, the marginal density fx can be approximated
by making measurements of the radii of cross-sectional circles. Then the problem
becomes that of trying to solve for an approximation to fx, since it is the distribution
of spherical radii that is of real interest. [ |

Bivariate Normal Density
The conditional density of ¥ given X is the ratio of the bivariate normal density to a
univariate normal density. After some messy algebra, this ratio simplifies to

Oy 2
Y=ty —p—x — px)
1 oy
Srix(ylx) =

1
————————¢€X
oy+/2m(1 — p?) P12 ai(1 — p?)

This is a normal density with mean iy + p(x — jux)oy /oy and variance o2(1 — p?).
The conditional distribution of Y given X is a univariate normal distribution.

In Example B in Section 2.2.3, the distribution of the velocity of a turbulent
wind flow was shown to be approximately normally distributed. Van Atta and Chen
(1968) also measured the joint distribution of the velocity at a point at two different
times, ¢ and ¢ + 7. Figure 3.14 shows the measured conditional density of the ve-
locity, v,, at time ¢t 4+ 7, given various values of v;. There is a systematic departure
from the normal distribution. Therefore, it appears that, even though the velocity
is normally distributed, the joint distribution of v; and v, is not bivariate normal.
This should not be totally unexpected, since the relation of v, and v, must con-
form to equations of motion and continuity, which may not permit a joint normal
distribution. |

Example C illustrates that even when two random variables are marginally nor-
mally distributed, they need not be jointly normally distributed.
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FIGURE 3.14 The conditional densities of v, given v; for selected values of vy,
where vy and v, are components of the velocity of a turbulent wind flow at different
times. The solid lines are the conditional densities according to a normal fit, and the
triangles and squares are empirical values determined from 409,600 observations.

EXAMPLE D Rejection Method
The rejection method is commonly used to generate random variables from a density
function, especially when the inverse of the cdf cannot be found in closed form
and therefore the inverse cdf method, Proposition D in Section 2.3, cannot be used.
Suppose that f is a density function that is nonzero on an interval [a, b] and zero
outside the interval (¢ and b may be infinite). Let M (x) be a function such that
M (x) > f(x) on [a, b], and let

M (x)

) = [P M(x) dx
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be a probability density function. As we will see, the idea is to choose M so that it is
easy to generate random variables from m. If [a, b] is finite, m can be chosen to be
the uniform distribution on [a, b]. The algorithm is as follows:

Step 1: Generate 7 with the density m.
Step 2: Generate U, uniform on [0, 1] and independentof T. If M(T) x U < f(T),
then let X = T (accept T'). Otherwise, go to Step 1 (reject T).

See Figure 3.15. From the figure, we can see that a geometrical interpretation of this
algorithm is as follows: Throw a dart that lands uniformly in the rectangular region of

the figure. If the dart lands below the curve f(x), record its x coordinate; otherwise,
reject it.

y

accept /reject

S
~
S

FIGURE 3.15 lllustration of the rejection method.

We must check that the density function of the random variable X thus obtained
is in fact f:
Px <X <x+4+dx)=Px <T <x+dx|accept)
P(x <T < x +dx and accept)

P (accept)
_ Paccept]x <T <x+dx)P(x =T <x +dx)
- P (accept)
First consider the numerator of this expression. We have
P(acceptlx < T <x+dx)=PU < f(x)/M(x)) = %
X

so that the numerator is
m(x)dx f(x)  f(x)dx
M) [P M(x) dx

From the law of total probability, the denominator is

P(accept) = P(U < f(T)/M(T))

b
= &m(t) dt =

« M@ P M) ar

where the last two steps follow from the definition of m and since f integrates to 1.
Finally, we see that the numerator over the denominator is f(x) dx. [ ]
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In order for the rejection method to be computationally efficient, the algorithm
should lead to acceptance with high probability; otherwise, many rejection steps may
have to be looped through for each acceptance.

Bayesian Inference

A freshly minted coin has a certain probability of coming up heads if it is spun on its
edge, but that probability is not necessarily equal to % Now suppose it is spun z times
and comes up heads X times. What has been learned about the chance the coin comes
up heads? We will go through a Bayesian treatment of this problem. Let ® denote the
probability that the coin will come up heads. We represent our knowledge about ®
before gathering any data by a probability density on [0, 1], called the prior density.
If we are totally ignorant about ®, we might represent our state of knowledge by a
uniform density on [0, 1]:

fe@ =1, 0<6 <1.

We will see how observing X changes our knowledge about ®, transforming the prior
distribution into a “posterior” distribution.

Given a value 6, X follows a binomial distribution with » trials and probability
of success 6:

Frio10) = (Z)em —0y™,  x=0.1....n
Now O is continuous and X is discrete, and they have a joint probability distribution:
Jox(0,x) = fxje(x10) fo(6)
= (Z)@’%l —0y, x=0.1,....n 0<0<1

This is a density function in 6 and a probability mass function in x, an object of a
kind we have not seen before. We can calculate the marginal density X by integrating

the joint over 6:
"' /n
fx(x) :/ < >9"(1 —0)""do
0 X

We can calculate this formidable looking integral by a trick. First write

ny n! _ 'h+1)

x) xln—x)! Tx+Dn—x+1)
(If k is an integer, I'(k) = (k — 1)!; see Problem 49 in Chapter 2). Recall the beta
density (Section 2.2.4)

F'(a+b
glu) = Ha+b) )u“‘l(l w7, 0=u<l
[(a)l(b)
The fact that this density integrates to 1 tells us that

/1 U e PR CINC)
0 I'(a + b)



3.5 Conditional Distributions 95

Thus, identifying u with 8, a — 1 with x, and b — 1 withn — x,

1
Fr(x) = Fn+ 05 (1 — 6)"*do

x4+ DI n—x+1) J,
_ C(n+1) Fx+D(n—x+1)
ST+ D(m—x+1) I'(n+2)

1
= ) x=0,1,...,n
n—+1

Thus, if our prior on 6 is uniform, each outcome of X is a priori equally likely.
Our knowledge about ® having observed X = x is quantified in the conditional
density of ® given X = x:

fo,x(0,x)
av(Olx) = —————— 7~
Sox (0]x) Fr(x)

n
= (n+ 1)< >9*(1 — gy
X

_ F(}’l+l) x _ n—x
=0 D r s 49

_ Lot2) e gy
P+ Dl —x+1)

The relationship xI"(x) = I'(x + 1) has been used in the second step (see Problem 49,
Chapter 2). Bear in mind that for each fixed x, this is a function of 6—the posterior
density of 8 given x—which quantifies our opinion about ® having observed x heads
in n spins. The posterior density is a beta density with parameters a = x + 1,
b=n—-x+1.

A one-Euro coin has the number 1 on one face and a bird on the other face. I spun
such a coin 20 times: the 1 came up 13 of the 20 times. Using the prior, ® ~ U[0, 1],
the posterior is beta witha = x4+ 1 = 14and b = n — x + 1 = 8. Figure 3.16 shows
this posterior, which represents my opinion if I was initially totally ignorant of 6 and
then observed thirteen 1s in 20 spins. From the figure, it is extremely unlikely that
0 < 0.25, for example. My probability, or belief, that 6 is greater than % is the area
under the density to the right of 1, which can be calculated to be 0.91. T can be 91%
certain that 6 is greater than %

We need to distinguish between the steps of the preceding probability calcu-
lations, which are are mathematically straightforward; and the interpretation of the
results, which goes beyond the mathematics and requires a model that belief can
be expressed in terms of probability and revised using the laws of probability. See
Figure 3.16. [ ]
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0.0 0.2 0.4 0.6 0.8 1.0
p

FIGURE 3.16 Beta density with parameters a = 14 and b = 8.

3.6 Functions of Jointly Distributed

3.6.1

Random Variables

The distribution of a function of a single random variable was developed in Section 2.3.
In this section, that development is extended to several random variables, but first some
important special cases are considered.

Sums and Quotients

Suppose that X and Y are discrete random variables taking values on the integers
and having the joint frequency function p(x, y), and let Z = X + Y. To find the
frequency function of Z, we note that Z = z whenever X = x and Y = z — x, where
x is an integer. The probability that Z = z is thus the sum over all x of these joint

probabilities, or
o0

pz(x) =Y plx,z—x)

X=—00

If X and Y are independent so that p(x, y) = px(x)py(y), then

pz(2) =Y px(X)py(z—x)

X=—00

This sum is called the convolution of the sequences pyx and py.
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FIGURE 3.17 X +Y < zwhenever (X, Y) is in the shaded region R,.

The continuous case is very similar. Supposing that X and Y are continuous ran-
dom variables, we first find the cdf of Z and then differentiate to find the density. Since
Z < z whenever the point (X, Y) is in the shaded region R, shown in Figure 3.17,
we have

Fz(z) = // fx,y)dx dy
R,

=/ / f(x,y) dy dx
In the inner integral, we make the change of variables y = v — x to obtain

Fz(z)=/ /Z f(x,v—x)dvdx

:/Z /Oof(x,v—x)dxdv

Differentiating, we have, if ffooo f(x,z—x) dx is continuous at z,

fz(2) = / fx,z—x)dx

which is the obvious analogue of the result for the discrete case.
If X and Y are independent,

fz(2) = / fxx) fr(z —x) dx

This integral is called the convolution of the functions fx and fy.
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Suppose that the lifetime of a component is exponentially distributed and that an
identical and independent backup component is available. The system operates as
long as one of the components is functional; therefore, the distribution of the life of
the system is that of the sum of two independent exponential random variables. Let
T, and T, be independent exponentials with parameter A, and let S = T} + T>.

fs(s)z/ re M re Mgy
0

It is important to note the limits of integration. Beyond these limits, one of the two
component densities is zero. When dealing with densities that are nonzero only on
some subset of the real line, we must always be careful. Continuing, we have

Fo(s) = A2 / e dt
0

= Ase™™

This is a gamma distribution with parameters 2 and A (compare with Example A in
Section 3.5.2). [ ]

Let us next consider the quotient of two continuous random variables. The deriva-
tion is very similar to that for the sum of such variables, given previously: We first find
the cdf and then differentiate to find the density. Suppose that X and Y are continuous
with joint density function f and that Z = Y/X. Then Fz(z) = P(Z < z) is the
probability of the set of (x, y) such that y/x < z.If x > O, this is the set y < xz; if
x < 0, itis the set y > xz. Thus,

0 e} o0 Xz
Fo= [ [ remavas [ reondyas
—o0 Jxz 0 -0

To remove the dependence of the inner integrals on x, we make the change of vari-
ables y = xv in the inner integrals and obtain

0 —00 o0 Z
Fz(z)z/ / xf(x,xv) dv dx—i—/ / xf(x,xv) dvdx
—0o0 Jz 0 —00
0 z 00 Z
=/ / (=x) f(x, xv) dv dx+/ / xf(x,xv) dvdx
-0 o0 0 —00

:/Z /Oc |x|f(x,xv) dx dv

Finally, differentiating (again under an assumption of continuity), we find

fz(Z)=/ x| f(x, x2) dx

oo

In particular, if X and Y are independent,

fz(Z)=/ x| fx (x) fr (x2) dx

o0
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Suppose that X and Y are independent standard normal random variables and that
Z =Y/X. We then have

= x| —x22 —x222
fz(z) = —e eV dx
oo 2T

From the symmetry of the integrand about zero,
! > —x2((2+1)/2)
@ == [ xe @D gy
T Jo

To simplify this, we make the change of variables u = x? to obtain

fz(2) = L /OO e @D/ gy
2 0

Next, using the fact that fooo rexp(—Ax) dx = 1 with A = (% + 1)/2, we get

1
=—, —00 < 7 < 00
1= :
This density is called the Cauchy density. Like the standard normal density, the
Cauchy density is symmetric about zero and bell-shaped, but the tails of the Cauchy
tend to zero very slowly compared to the tails of the normal. This can be interpreted
as being because of a substantial probability that X in the quotient Y /X is near
Zero. [ |

Example B indicates one method of generating Cauchy random variables—we
can generate independent standard normal random variables and form their quotient.
The next section shows how to generate standard normals.

The General Case

The following example illustrates the concepts that are important to the general case
of functions of several random variables and is also interesting in its own right.

Suppose that X and Y are independent standard normal random variables, which
means that their joint distribution is the standard bivariate normal distribution, or

1 2h 2
fxy(x,y) = -—e BT
2

We change to polar coordinates and then reexpress the density in this new coordinate
system (R > 0,0 < ® <2m):

R=VX*47Y?
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tan~! (%) , ifX >0
tan~' () + 7, if X <0

%sgn(Y), ifX=0Y#0

0, ifX=0Y=0

ps

(The range of the inverse tangent function is taken to be —7

transformation is

< © < 7.) The inverse

X = Rcos®
Y = Rsin®
The joint density of R and ® is
fre(r,0)dr d0 = P(r < R <r+dr,0 <© <60 +db)

This probability is equal to the area of the shaded patch in Figure 3.18 times
fxy[x(r, 0), y(r, 0)]. The area in question is clearly r dr d, so

Pr<R<r+dr <0 <60+4+df) = fxy(rcos@,rsinf)r dr do

and
fre(r,0) = rfxy(rcos6,rsind)
Thus,
I =2 cos? 0))2— (2 sin 0) 2
fro(r, 0) = Ee[ (2 cos? 6)/2—(r2 sin? 0),2]
= Lreﬂz/z
2w

From this, we see that the joint density factors implying that R and ® are independent
random variables, that ® is uniform on [0, 2], and that R has the density

fr)=re”?  r>=0

which is called the Rayleigh density.

S

0+ do
\o

FIGURE 3.18 The area of the shaded patch is rdrd6o.

r r+dr
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An interesting relationship can be found by changing variables again, letting
T = R?. Using the standard techniques for finding the density of a function of a
single random variable, we obtain

1
frt) = Ee*’/z, t>0

This is an exponential distribution with parameter % Because R and © are indepen-
dent, so are T and ®, and the joint density of the latter pair is

1 1
fro(t,0) = — (5> e

We have thus arrived at a characterization of the standard bivariate normal distribu-
tion: ® is uniform on [0, 277], and R? is exponential with parameter % (Also, from
Example B in Section 3.6.1, tan ® follows a Cauchy distribution.)

These relationships can be used to construct an algorithm for generating standard
normal random variables, which is quite useful since ®, the cdf, and ®~! cannot be
expressed in closed form. First, generate U; and U,, which are independent and
uniform on [0, 1]. Then —21log U, is exponential with parameter %, and 27 U, is
uniform on [0, 277 ]. It follows that

X =+/—2logU, cos(2n U,)
and
Y =+/—2log U, sin(2r U,)

are independent standard normal random variables. This method of generating nor-
mally distributed random variables is sometimes called the polar method. [ |

For the general case, suppose that X and Y are jointly distributed continuous
random variables, that X and Y are mapped onto U and V by the transformation

u=gx,y)
v = g(x,y)
and that the transformation can be inverted to obtain
x = hi{(u,v)
y = ho(u,v)
Assume that g, and g, have continuous partial derivatives and that the Jacobian
981 981
ax 0 0 0 ad 0
J(x, y) = det ol (28) (082) _ (%82 (981 4
dgr 08> ox ay ax dy
dx dJy
for all x and y. This leads directly to the following result.
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PROPOSITION A
Under the assumptions just stated, the joint density of U and V is
fov (@, v) = fry (i (u, v), ha(u, V)17 (B, v), ho(u, V)]

for (u,v) such that u = g;(x,y) and v = gy(x, y) for some (x, y) and O
elsewhere. [ |

We will not prove Proposition A here. It follows from the formula established
in advanced calculus for a change of variables in multiple integrals. The essential
elements of the proof follow the discussion in Example A.

To illustrate the formalism, let us redo Example A. The roles of u and v are played
by r and 6:

r = '/)C2+y2
# = tan™" (X)
X

x =rcosf

The inverse transformation is

y =rsinf

After some algebra, we obtain the partial derivatives:

or X or y
a0 -y a0 by
e T
The Jacobian is the determinant of the matrix of these expressions, or
J(x,y) = S —
X2 4y2 o

Proposition A therefore says that
fro(r,0) =rfxy(rcos@, rsin@)

forr > 0,0 <6 < 2m, and 0 elsewhere, which is the same as the result we obtained
by a direct argument in Example A. ]

Proposition A extends readily to transformations of more than two random vari-
ables. If X, ..., X, have the joint density function f¥,..x, and

Yi =gi(X1, ..., X)), i=1,...,n
Xi=h(Y1,...,Y,), i=1,...,n
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and if J(xy, ..., x,) is the determinant of the matrix with the ij entry dg; /dx;, then
the joint density of Yy, ..., Y, is

Srier, O ) = frpex, @1 XD T (LX)
wherein each x; is expressed in terms of the y’s; x; = h; (y1, ..., Yn)-

Suppose that X; and X, are independent standard normal random variables and that
Y, =X,
=X, +X,

We will show that the joint distribution of Y; and Y5 is bivariate normal. The Jacobian
of the transformation is simply

J(x,y):det“ ﬂ =1

Since the inverse transformation is x; = y; and x, = y, — y;, from Proposition A the
joint density of ¥, and Y, is

_ 1 L., )
SO, y2) = 7 SXP —5[)’1 + (2 — »)?]

1 1
= e [ (25 43 - 2]

This can be recognized to be a bivariate normal density, the parameters of which can
be identified by comparing the constants in this expression with the general form of the
bivariate normal (see Example F of Section 3.3). First, since the exponential contains
only quadratic terms in y, and y,, we have puy, = uy, = 0. (If uy, were nonzero,
for example, examination of the equation for the bivariate density in Example F of
Section 3.3 shows that there would be a term y;jiy,.) Next, from the constant that
occurs in front of the exponential, we have

Oy, 0y, \/ 1-— ,02 =1

From the coefficient of y; we have

1
o (= p) =5

Dividing the second relationship into the square of the first gives 032 = 2. From the
coefficient of y,, we have

o (—pH =1

from which it follows that p? = 1.

From the sign of the cross product, we see that p = 1/+/2. Finally, we have
oy, = 1. We thus see that this linear transformation of two independent standard
normal random variables follows a bivariate normal distribution. This is a special
case of a more general result: A nonsingular linear transformation of two random
variables whose joint distribution is bivariate normal yields two random variables
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whose joint distribution is still bivariate normal, although with different parameters.
(See Problem 58.) [ |

Extrema and Order Statistics

This section is concerned with ordering a collection of independent continuous
random variables. In particular, let us assume that X;, X5, ..., X, are independent
random variables with the common cdf F" and density f. Let U denote the maximum
of the X; and V the minimum. The cdfs of U and V, and therefore their densities,
can be found by a simple trick.

First, we note that U < u if and only if X; < u for all i. Thus,

Fy(u) = P(U <u)
=PXi<uwPXa<u)---P(X, <u
= [Fw)]"

Differentiating, we find the density,

fo) =nf@F @]
Similarly, V > v if and only if X; > v for all i. Thus,

l=Fy()=[1-FWI"
and

Fy)=1-[1-F®]I"

The density function of V is therefore

fr) =nf@I[l - F)]""!

Suppose that n system components are connected in series, which means that the sys-
tem fails if any one of them fails, and that the lifetimes of the components, 71, ..., T,,
are independent random variables that are exponentially distributed with parameter A:
F(t) = 1—e~*. The random variable that represents the length of time the system op-
erates is V, which is the minimum of the 7; and by the preceding result has the density

fr () = nae™ ey
—niv

=nie

We see that V is exponentially distributed with parameter nA. ]

Suppose that a system has components as described in Example A but connected
in parallel, which means that the system fails only when they all fail. The system’s
lifetime is thus the maximum of n exponential random variables and has the
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density
fU(u) — n}\e—ku(l _ e—ku)n—l

By expanding the last term using the binomial theorem, we see that this density is a
weighted sum of exponential terms rather than a simple exponential density. [ |

We will now derive the preceding results once more, by the differential technique,
and generalize them. To find f; (1), we observe that u < U < u + du if one of the
nX; falls in the interval (u, u + du) and the other (n — 1)X; fall to the left of u.
The probability of any particular such arrangement is [ F (u)]"~! f (u)du, and because
there are n such arrangements,

fo) =nlF@)]1"™" f(u)

Now we again assume that X, ..., X, are independent continuous random vari-
ables with density f(x). We sort the X; and denote by X(;) < X < -+ < X, the
order statistics. Note that X is not necessarily equal to X(;,. (In fact, this equality
holds with probability n~'.) Thus, X ( 18 the maximum, and X ;) is the minimum. If
n is odd, say, n = 2m + 1, then X ;4 is called the median of the X;.

THEOREM A

The density of X ), the kth-order statistic, is

__nt k—1 _ n—k
Se(x) = * =Dl = k)!f(X)F (V[ = F(x)]

Proof

We will use a differential argument to derive this result heuristically. (The alter-
native approach of first deriving the cdf and then differentiating is developed in
Problem 66 at the end of this chapter.) The event x < X, < x + dx occurs if
k — 1 observations are less than x, one observation is in the interval [x, x + dx],
and n — k observations are greater than x 4 dx. The probability of any particular
arrangement of this type is f(x) F*'(x)[1 — F(x)]"*dx, and, by the multi-
nomial theorem, there are n!/[(k — 1)!1!(n — k)!] such arrangements, which
completes the argument. |

EXAMPLE C For the case where the X; are uniform on [0, 1], the density of the kth-order statistic
reduces to

n!

—  xMla=x)k 0<x<l1
k — D(n —k)!

This is the beta density. An interesting by-product of this result is that since the
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density integrates to 1,

/lxk'(l ey Hdx — k—D!(n—k)!
0

n!

Joint distributions of order statistics can also be worked out. For example, to find
the joint density of the minimum and maximum, we note that x < Xy < x +dx
and y < X(,) <y +dyifone X; falls in [x, x + dx], one falls in [y, y + dy], and
n — 2 fallin [x, y]. There are n(n — 1) ways to choose the minimum and maximum,
and thus V = X(;y and U = X, have the joint density

fu,v) =nn—1)f@)f@IFu) — F)]", u=v
For example, for the uniform case,
fu,v)y=nn— 1w —v)"? l1>u>v>0

The range of X1y, ..., Xu) 1S R = X(») — X(1). Using the same kind of analysis we
used in Section 3.6.1 to derive the distribution of a sum, we find

Fa(r) =/ Fo+rv) dv

Find the distribution of the range, U — V, for the uniform [0, 1] case. The integrand
is fo+r,v)=nn—Dr"2for0<v<v+r <lor equivalently, 0 <v < 1 —r.
Thus,

I—r
fR(r):/ nin—Dr"?dv=nm—Dr*1—r), 0<r<l1
0
The corresponding cdf is

Fr(r) =nr"' = (m = D", 0<r<li L

Tolerance Interval

If a large number of independent random variables having the common density func-
tion f are observed, it seems intuitively likely that most of the probability mass of
the density f(x) is contained in the interval (X, X(,)) and unlikely that a future
observation will lie outside this interval. In fact, very precise statements can be made.
For example, the amount of the probability mass in the interval is F (X)) — F (X)),
a random variable that we will denote by Q. From Proposition C of Section 2.3, the
distribution of F(X;) is uniform; therefore, the distribution of Q is the distribution
of Uy — Uqy, which is the range of n independent uniform random variables. Thus,
P(Q > w), the probability that more than 100« % of the probability mass is contained
in the range is from Example D,

P(Q>a)=1—na""'+@m - a"
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For example, if n = 100 and o = .95, this probability is .96. In words, this means
that the probability is .96 that the range of 100 independent random variables covers
95% or more of the probability mass, or, with probability .96, 95% of all further
observations from the same distribution will fall between the minimum and maximum.
This statement does not depend on the actual form of the distribution. |

Problems

1. The joint frequency function of two discrete random variables, X and Y, is given
in the following table:

X
y 1 2 3 4
1 10 05 02 02
2 05 20 .05 02
3 02 05 20 04
4 02 02 04 10

a. Find the marginal frequency functions of X and Y.
b. Find the conditional frequency function of X given Y = 1 and of Y given
X=1.

2. An urn contains p black balls, ¢ white balls, and r red balls; and n balls are
chosen without replacement.

a. Find the joint distribution of the numbers of black, white, and red balls in the
sample.

b. Find the joint distribution of the numbers of black and white balls in the
sample.

c. Find the marginal distribution of the number of white balls in the sample.

3. Three players play 10 independent rounds of a game, and each player has prob-
ability % of winning each round. Find the joint distribution of the numbers of
games won by each of the three players.

4. Asieveis made of a square mesh of wires. Each wire has diameter d, and the holes
in the mesh are squares whose side length is w. A spherical particle of radius 7 is
dropped on the mesh. What is the probability that it passes through? What is the
probability that it fails to pass through if it is dropped n times? (Calculations such
as these are relevant to the theory of sieving for analyzing the size distribution of
particulate matter.)

5. (Buffon’s Needle Problem) A needle of length L is dropped randomly on a plane
ruled with parallel lines that are a distance D apart, where D > L. Show that
the probability that the needle comes to rest crossing a line is 2L /( D). Explain
how this gives a mechanical means of estimating the value of 7.
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6.

10.

11.

12.

13.

14.

15.

A point is chosen randomly in the interior of an ellipse:

x2 y2
2!

Find the marginal densities of the x and y coordinates of the point.
Find the joint and marginal densities corresponding to the cdf
F(x,y) = (I—e ) (1=e™), x>0, y=0, a >0, g >0

Let X and Y have the joint density
6
feey=z@+»,  0=x=<l  0=y=I

a. By integrating over the appropriate regions, find (i) P(X >Y),
(i) P(X +Y <), (ii)) P(X < 1).

b. Find the marginal densities of X and Y.

c. Find the two conditional densities.

Suppose that (X, Y) is uniformly distributed over the region defined by 0 < y <
l—x%and -1 <x<1.

a. Find the marginal densities of X and Y.

b. Find the two conditional densities.

A point is uniformly distributed in a unit sphere in three dimensions.

a. Find the marginal densities of the x, y, and z coordinates.
b. Find the joint density of the x and y coordinates.
c. Find the density of the xy coordinates conditional on Z = 0.

Let Uy, U,, and U; be independent random variables uniform on [0, 1]. Find the
probability that the roots of the quadratic U,x* + U,x + U; are real.

Let
(x,y) = c(x? — yHe™, 0<x < o0, —x<y<x
Sx,y y y

a. Find c.
b. Find the marginal densities.
c. Find the conditional densities.

A fair coin is thrown once; if it lands heads up, it is thrown a second time. Find
the frequency function of the total number of heads.

Suppose that
flx,y) =xe0FD, 0<x < oo, 0<y<o0

a. Find the marginal densities of X and Y. Are X and Y independent?
b. Find the conditional densities of X and Y.

Suppose that X and Y have the joint density function

fx,y) =cy/1—x2—y2, ¥ 4+yr<1

a. Find c.
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b. Sketch the joint density.

¢. Find P(X? +Y?) < 1.

d. Find the marginal densities of X and Y. Are X and Y independent random
variables?

e. Find the conditional densities.

What is the probability density of the time between the arrival of the two packets
of Example E in Section 3.4?

Let (X, Y) be a random point chosen uniformly on the region R = {(x,y) :

x|+ |yl < 1}

a. Sketch R.

b. Find the marginal densities of X and Y using your sketch. Be careful of the
range of integration.

c. Find the conditional density of ¥ given X.

Let X and Y have the joint density function
. =k(x-y), 0=y=x=l

and 0 elsewhere.

a. Sketch the region over which the density is positive and use it in determining
limits of integration to answer the following questions.

b. Find k.

c. Find the marginal densities of X and Y.

d. Find the conditional densities of ¥ given X and X given Y.

Suppose that two components have independent exponentially distributed life-
times, 7} and 7,, with parameters « and 3, respectively. Find (a) P(7; > T5) and
(b) P(Ty > 2T>).

If X, is uniform on [0, 1], and, conditional on X, X5, is uniform on [0, X ], find
the joint and marginal distributions of X and X,.

An instrument is used to measure very small concentrations, X, of a certain
chemical in soil samples. Suppose that the values of X in those soils in which the
chemical is present is modeled as a random variable with density function f (x).
The assay of a soil reports a concentration only if the chemical is first determined
to be present. At very low concentrations, however, the chemical may fail to
be detected even if it is present. This phenomenon is modeled by assuming that
if the concentration is x, the chemical is detected with probability R(x). Let ¥
denote the concentration of a chemical in a soil in which it has been determined
to be present. Show that the density function of Y is

R(y)f(y)
JoT R(x) f(x) dx

Consider a Poisson process on the real line, and denote by N (7, #,) the number
of events in the interval (¢, 1,). If tg < #; < t,, find the conditional distribution of
N(ty, t;) given that N (%, t,) = n. (Hint: Use the fact that the numbers of events
in disjoint subsets are independent.)

gly) =
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23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

Suppose that, conditional on N, X has a binomial distribution with N trials and
probability p of success, and that N is a binomial random variable with m trials
and probability r of success. Find the unconditional distribution of X.

Let P have a uniform distribution on [0, 1], and, conditional on P = p, let X
have a Bernoulli distribution with parameter p. Find the conditional distribution
of P given X.

Let X have the density function f, and let Y = X with probability % andY = —-X
with probability % Show that the density of Y is symmetric about zero—that is,

fry) = fr(=y).

Spherical particles whose radii have the density function fx(r) are dropped on a
mesh as in Problem 4. Find an expression for the density function of the particles
that pass through.

Prove that X and Y are independent if and only if fxy(x|y) = fx(x) for all x
and y.

Show that C (u, v) = uvis acopula. Why is it called “the independence copula”?

Use the Farlie-Morgenstern copula to construct a bivariate density whose marginal
densities are exponential. Find an expression for the joint density.

For0 <a < 1and 0 < B < 1, show that C(u, v) = min(u'%v, uv'#) is a
copula (the Marshall-Olkin copula). What is the joint density?

Suppose that (X, Y) is uniform on the disk of radius 1 as in Example E of Sec-
tion 3.3. Without doing any calculations, argue that X and Y are not independent.

Continuing Example E of Section 3.5.2, suppose you had to guess a value of 6.
One plausible guess would be the value of 6 that maximizes the posterior density.
Find that value. Does the result make intuitive sense?

Suppose that, as in Example E of Section 3.5.2, your prior opinion that the coin
will land with heads up is represented by a uniform density on [0, 1]. You now
spin the coin repeatedly and record the number of times, N, until a heads comes
up. So if heads comes up on the first spin, N = 1, etc.

a. Find the posterior density of ® given N.
b. Do this with a newly minted penny and graph the posterior density.

This problem continues Example E of Section 3.5.2. In that example, the prior
opinion for the value of ® was represented by the uniform density. Suppose that
the prior density had been a beta density with parameters a = b = 3, reflecting
a stronger prior belief that the chance of a 1 was near % Graph this prior density.
Following the reasoning of the example, find the posterior density, plot it, and
compare it to the posterior density shown in the example.

Find a newly minted penny. Place it on its edge and spin it 20 times. Following
Example E of Section 3.5.2, calculate and graph the posterior distribution. Spin
another 20 times, and calculate and graph the posterior based on all 40 spins.
What happens as you increase the number of spins?
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Let f(x) =(14+ax)/2,for—1 <x<land—-1<a <1.
a. Describe an algorithm to generate random variables from this density using

the rejection method.
b. Write a computer program to do so, and test it out.

Let f(x) = 6x%(1 —x)%, for—1 <x < 1.

a. Describe an algorithm to generate random variables from this density using
the rejection method. In what proportion of the trials will the acceptance step
be taken?

b. Write a computer program to do so, and test it out.

Show that the number of iterations necessary to generate a random variable using
the rejection method is a geometric random variable, and evaluate the parameter
of the geometric frequency function. Show that in order to keep the number of
iterations small, M (x) should be chosen to be close to f(x).

Show that the following method of generating discrete random variables works
(D. R. Fredkin). Suppose, for concreteness, that X takes on values 0, 1, 2, . .. with
probabilities py, pi, p2, - ... Let U be a uniform random variable. If U < py,
return X = 0. If not, replace U by U — py, and if the new U is less than p,,
return X = 1. If not, decrement U by p;, compare U to p,, etc.

Suppose that X and Y are discrete random variables with a joint probability
mass function pxy (x, y). Show that the following procedure generates a random
variable X ~ pxy(x|y).

a. Generate X ~ px(x).
b. Accept X with probability p(y|X).
c. If X is accepted, terminate and return X. Otherwise go to Step a.

Now suppose that X is uniformly distributed on the integers 1, 2, ..., 100 and
that given X = x, Y is uniform on the integers 1, 2, ..., x. You observe Y = 44.
What does this tell you about X ? Simulate the distribution of X, given Y = 44,
1000 times and make a histogram of the value obtained. How would you estimate
E(X|Y = 44)?

How could you extend the procedure of the previous problem in the case that X
and Y are continuous random variables?

a. Let T be an exponential random variable with parameter X; let W be a random
variable independent of 7', which is =1 with probability % each; and let X =
WT. Show that the density of X is

Fex) = %e—*‘*'

which is called the double exponential density.
b. Show that for some constant c,

1 2
o2 < e

V21
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43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

Use this result and that of part (a) to show how to use the rejection method to
generate random variables from a standard normal density.

Let U, and U, be independent and uniform on [0, 1]. Find and sketch the density
function of S = U; + U..

Let N, and N, be independent random variables following Poisson distributions
with parameters A, and X,. Show that the distribution of N = N + N, is Poisson
with parameter 1| + A,.

For a Poisson distribution, suppose that events are independently labeled A and
B with probabilities ps + pp = 1. If the parameter of the Poisson distribution is
A, show that the number of events labeled A follows a Poisson distribution with
parameter pyA.

Let X and Y be jointly continuous random variables. Find an expression for the
densityof Z =X —7Y.

Let X and Y be independent standard normal random variables. Find the density
of Z = X + Y, and show that Z is normally distributed as well. (Hint: Use the
technique of completing the square to help in evaluating the integral.)

Let T} and T, be independent exponentials with parameters A; and A,. Find the
density function of 77 + 7>.

Find the density function of X 4 Y, where X and Y have a joint density as given
in Example D in Section 3.3.

Suppose that X and Y are independent discrete random variables and each as-
sumes the values 0, 1, and 2 with probability % each. Find the frequency function
of X+7Y.

Let X and Y have the joint density function f(x, y), and let Z = XY . Show that
the density function of Z is

[ee] z 1
= ,— | —d
o= [ ()

Find the density of the quotient of two independent uniform random variables.

Consider forming a random rectangle in two ways. Let U, U,, and U; be inde-
pendent random variables uniform on [0, 1]. One rectangle has sides U; and U,,
and the other is a square with sides Us. Find the probability that the area of the
square is greater than the area of the other rectangle.

Let X, Y, and Z be independent N (0, 0?).Let ®, ®, and R be the corresponding
random variables that are the spherical coordinates of (X, Y, Z):

X = rsin¢cosf

y = rsingsinfd

7 =rcos¢
0<¢<m, 0<0<2n
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Find the joint and marginal densities of ©, ®, and R. (Hint: dx dy dz = r’sin¢
drdfde.)

A point is generated on a unit disk in the following way: The radius, R, is uniform
on [0, 1], and the angle ® is uniform on [0, 27r] and is independent of R.

a. Find the joint density of X = Rcos® and ¥ = Rsin ©.

b. Find the marginal densities of X and Y.

c. Is the density uniform over the disk? If not, modify the method to produce a
uniform density.

If X and Y are independent exponential random variables, find the joint density
of the polar coordinates R and ® of the point (X, Y). Are R and ® independent?

Suppose that Y; and Y, follow a bivariate normal distribution with parameters
WLy, = py, = 0, 031 =1, 032 =2, and p = 1/+/2. Find a linear transformation
X1 = anyi + apy2, X2 = a1 + anyr such that X1 and Xp are independent
standard normal random variables. (Hint: See Example C of Section 3.6.2.)

Show that if the joint distribution of X; and X, is bivariate normal, then the joint
distribution of Y| = a, X + b; and Y, = a, X, + b, is bivariate normal.

Let X, and X, be independent standard normal random variables. Show that the
joint distribution of

Yi =an Xy +anX:+ b
Y, = anXi +anXs + b,

18 bivariate normal.

Using the results of the previous problem, describe a method for generating pseu-
dorandom variables that have a bivariate normal distribution from independent
pseudorandom uniform variables.

Let X and Y be jointly continuous random variables. Find an expression for the
jointdensity of U =a+bX and V =c 4 dY.

If X and Y are independent standard normal random variables, find P(X 24
Y2 < 1).

Let X and Y be jointly continuous random variables.

a. Develop an expression for the joint density of X + Y and X — Y.

b. Develop an expression for the joint density of XY and Y/ X.

c¢. Specialize the expressions from parts (a) and (b) to the case where X and Y
are independent.

Find the joint density of X 4+ Y and X/Y, where X and Y are independent
exponential random variables with parameter A. Show that X 4+ Y and X/Y are
independent.

Suppose that a system’s components are connected in series and have lifetimes
that are independent exponential random variables with parameters A;. Show that
the lifetime of the system is exponential with parameter » | A;.
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66.

Each component of the following system (Figure 3.19) has an independent ex-
ponentially distributed lifetime with parameter 1. Find the cdf and the density of
the system’s lifetime.

LN

o
(0}

© ©
FIGURE 3.19
67. A card contains n chips and has an error-correcting mechanism such that the card

68.

69.

70.

71.

72.

73.

74.

still functions if a single chip fails but does not function if two or more chips fail.
If each chip has a lifetime that is an independent exponential with parameter A,
find the density function of the card’s lifetime.

Suppose that a queue has n servers and that the length of time to complete a job
is an exponential random variable. If a job is at the top of the queue and will be
handled by the next available server, what is the distribution of the waiting time
until service? What is the distribution of the waiting time until service of the next
job in the queue?

Find the density of the minimum of n independent Weibull random variables,
each of which has the density

f(t) = pa~ PPt/ t>0

If five numbers are chosen at random in the interval [0, 1], what is the probability
that they all lie in the middle half of the interval?

Let Xy, ..., X, be independent random variables, each with the density func-
tion f. Find an expression for the probability that the interval (—oo, X,)]
encompasses at least 100v% of the probability mass of f.

Let X, X5, ..., X, be independent continuous random variables each with cu-
mulative distribution function F. Show that the joint cdf of X ;) and X, is

F(x,y) =F'(y) = [F(y) = F)I", X<y

If X1, ..., X, are independent random variables, each with the density function
f, show that the joint density of X, ..., X is

nl f(xn) fx2) - f(xa), Xp <Xy <-- <X
Let U;, U,, and U; be independent uniform random variables.

a. Find the joint density of U, U(z), and Ugs,.

b. The locations of three gas stations are independently and randomly placed
along a mile of highway. What is the probability that no two gas stations are
less than % mile apart?
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Use the differential method to find the joint density of X ;) and X;), wherei < j.

Prove Theorem A of Section 3.7 by finding the cdf of X, and differentiating.
(Hint: X < x if and only if k or more of the X; are less than or equal to x. The
number of X; less than or equal to x is a binomial random variable.)

Find the density of Uy — U1 if the U;,i =1, ..., n are independent uniform
random variables. This is the density of the spacing between adjacent points
chosen uniformly in the interval [0, 1].

Show that

1 y 1
/0 /O(y_x) dxdy = Hn 1)

If T} and 7, are independent exponential random variables, find the density
function of R = Ty — Tyy.

Let Uy, ..., U, be independent uniform random variables, and let V be uniform
and independent of the U, .

a. Find P(V < U(n)).

b. Find P(U(l) <V < U(n)).

Do both parts of Problem 80 again, assuming that the U; and V have the density
function f and the cdf F, with F~! uniquely defined. Hint: F (U;) has a uniform
distribution.
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CHAPTER 4

Expected Values

The Expected Value of a Random Variable

The concept of the expected value of a random variable parallels the notion of a
weighted average. The possible values of the random variable are weighted by their
probabilities, as specified in the following definition.

DEFINITION

If X is a discrete random variable with frequency function p(x), the expected
value of X, denoted by E(X), is

E(X) =) xp(x)

provided that ), |x;|p(x;) < oo. If the sum diverges, the expectation is unde-
fined. |

E(X) is also referred to as the mean of X and is often denoted by p or px.
It might be helpful to think of the expected value of X as the center of mass of the
frequency function. Imagine placing the masses p(x;) at the points x; on a beam; the
balance point of the beam is the expected value of X.

Roulette

A roulette wheel has the numbers 1 through 36, as well as 0 and 00. If you bet $1
that an odd number comes up, you win or lose $1 according to whether that event
occurs. If X denotes your net gain, X = | with probability % and X = —1 with
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probability % The expected value of X is
20 1

18
EX) =1 % 4 (1) x — = ——
(M) =1Ix g+ DX =—15

Thus, your expected loss is about $.05. In Chapter 5, it will be shown that this coincides
in the limit with the actual average loss per game if you play a long sequence of
independent games. [ |

Expectation of a Geometric Random Variable
Suppose that items produced in a plant are independently defective with probability
p. Items are inspected one by one until a defective item is found. On the average, how
many items must be inspected?

The number of items inspected, X, is a geometric random variable, with P(X =
k) = q*'p, where ¢ = 1 — p. Therefore,

o0

[e.¢]
EX)=> kpg"'=p > kq*
k=1 k=1
. . k-1 d :
We use a trick to calculate the sum. Since kg“~' = —¢ ", we interchange the oper-
ations of summation and differentiation to obtain
d & d ¢
EX)=p— ) q"=p———
dq ; dg 1—¢q
__r _1
(I=g)* p

It can be shown that the interchange of differentiation and summation is justified.
Thus, for example, if 10% of the items are defective, an average of 10 items must be
examined to find one that is defective, as might have been guessed. [ ]

Poisson Distribution

The expected value of a Poisson random variable is

00 k
kAS

E(X) =

Since » 72,(A//j!) = e*, we have E(X) = A. The parameter . of the Poisson
distribution can thus be interpreted as the average count. ]
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EXAMPLE D

EXAMPLE E

St. Petersburg Paradox
A gambler has the following strategy for playing a sequence of games: He starts off
betting $1; if he loses, he doubles his bet; and he continues to double his bet until he
finally wins. To analyze this scheme, suppose that the game is fair and that he wins
or loses the amount he bets. At trial 0, he bets $1; if he loses, he bets $2 at trial 1;
and if he has not won by the kth trial, he bets $2¢. When he finally wins, he will be
$1 ahead, which can be checked by going through the scheme for the first few values
of k. This seems like a foolproof way to win $1. What could be wrong with it?

Let X denote the amount of money bet on the very last game (the game he wins).
Because the probability that k losses are followed by one win is 2=*+D,

Px—zk—1
(X = )_W

and

E(X) = Z nP(X = n)

n=0

o0

— ok 1 —

- Z k1 T o0
k=0

Formally, E(X) is not defined. Practically, the analysis shows a flaw in this scheme,
which is that it does not take into account the enormous amount of capital
required. ]

The definition of expectation for a continuous random variable is a fairly obvious
extension of the discrete case—summation is replaced by integration.

DEFINITION

If X is a continuous random variable with density f(x), then
E(X):/ xf(x)dx

provided that [ |x| f(x)dx < oo. If the integral diverges, the expectation is un-
defined. |

Again E(X) can be regarded as the center of mass of the density. We next consider
some examples.

Gamma Density
If X follows a gamma density with parameters « and A,

_ * )\’a o —Ax
E(X) = x%e " dx
o T'(o)
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This integral is easy to evaluate once we realize that A%*!x%e =/ ' (e +1) is a gamma
density and therefore integrates to 1. We thus have

o r 1
[ eran = Tt D
0 o+

from which it follows that

EOX) A¢ [F(ot + 1)]
() patl
Finally, using the relation I'(« + 1) = oI'(«), we find
o
E(X) = 5

For the exponential density, « = 1, so E(X) = 1/X. This may be contrasted to
the median of the exponential density, which was found in Section 2.2.1 to be log 2/.
The mean and the median can both be interpreted as “typical” values of X, but they
measure different attributes of the probability distribution. [ ]

Normal Distribution
From the definition of the expectation, we have

o

1 o0 1 G=w?
E(X) = xe 1 o2 dx
27 J -
Making the change of variables z = x — u changes this equation to

1 o 2 o 2 2
EX) = / e P g 4 H / e 7/ dz
o2 J-co o2 J-co

The first integral is O since the contributions from z < 0 cancel those from z > 0,
and the second integral is u because the normal density integrates to 1. Thus,

E(X)=pu

The parameter p of the normal density is the expectation, or mean value. We could
have made the derivation much shorter by claiming that it was “obvious” that since

the center of symmetry of the density is u, the expectation must be (. [ ]
Cauchy Density
Recall that the Cauchy density is
fo =1 (L
xX)=— , —00 < X < 00
7 \ 1+ x2

The density is symmetric about zero, so it would seem that E(X) = 0. However,

/00 |x|
=00
oo L+ x2
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EXAMPLE H

Therefore, the expectation does not exist. The reason that it fails to exist is, that the
density decreases so slowly that very large values of X can occur with substantial
probability. ]

The expected value can be interpreted as a long-run average. In Chapter 5, it will
be shown that if E(X) exists and if X, X», ... is a sequence of independent random
variables with the same distribution as X, and if §,, = Zl'.':l X;, then, as n — o0,

ﬁ — E(X)
n

This statement will be made more precise in Chapter 5. For now, a simple empirical
demonstration will be sufficient.

Using a pseudorandom number generator, a sequence X, X, ... of independent
standard normal random variables was generated, as well as a sequence Y, 1>, ...
of independent Cauchy random variables. Figure 4.1 shows the graphs of

1 n 1 n
G(n) = — X; d Chn)=- Y; =1,2,...,500
(n) . ; an (n) . ,Zzl: n

Note how G (n) appears to be tending to a limit, whereas C () does not. .
8t
= [
O 4
- R x\.u\_"“-_"‘\n\_..A.,\a""f“"’\.‘uw\mv‘-mom-ﬂ-“_*-.”. e ot
0 . . . . .
(a)
4 -
3t ~
2k e
S
| ®) .
0 i I
-1 .-’""-Ar""“"\-‘"
-2 i 1 ) | I |
0 100 200 300 400 500
n
(b)

FIGURE 4.1 The average of n independent random variables as a function of n for
(a) normal random variables and (b) Cauchy random variables.
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We conclude this section with a simple result that is of great utility in probability
theory.

THEOREM A Markov’s Inequality

If X is a random variable with P(X > 0) = 1 and for which E(X) exists, then
P(X >1) < E(X)/t.

Proof

We will prove this for the discrete case; the continuous case is entirely analogous.

E(X)=Y xp(x)

= () +Y_xp)

x<t x>t

All the terms in the sums are nonnegative because X takes on only nonnegative
values. Thus

E(X) =Y xp(x)

x>t

> tp(x) =tP(X > 1) n

x>t

This result says that the probability that X is much bigger than E(X) is small.
Suppose that in the theorem, we let t = k E(X); then according to the result, P(X >
kE(X)) < k~'. This holds for any nonnegative random variable, regardless of its
probability distribution.

Expectations of Functions of Random Variables

We often need to find E[g(X)], where X is arandom variable and g is a fixed function.
For example, according to the kinetic theory of gases, the magnitude of the velocity
of a gas molecule is random and its probability density is given by

N2[m o, 1

1
x“e 242
o3

i

fx(x) =

(This is Maxwell’s distribution: the parameter o depends on the temperature of the
gas.) From this density, we can find the average velocity, but suppose that we are
interested in finding the average kinetic energy ¥ = %mX 2, where m is the mass of
the molecule. The straightforward way to do this would seem to be the following: Let
Y = g(X); find the density or frequency function of Y, say, fy; and then compute
E(Y) from the definition. It turns out, fortunately, that the process is much simpler
than that.
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THEOREM A

Suppose that ¥ = g(X).

a. If X is discrete with frequency function p(x), then
EY)=Y gx)pk

provided that Y |g(x)|p(x) < oo.
b. If X is continuous with density function f (x), then

E(Y)=/ g(x) f(x)dx

o0

provided that [ [g(x)|f(x) dx < oo.

Proof

We will prove this result for the discrete case. The basic argument is the same
for the continuous case, but making that proof rigorous requires some advanced
theory of integration. By definition,

E¥)=) yipr(y)
Let A; denote the set of x’s mapped to y; by g; thatis, x € A; if g(x) = y;. Then
pr() =Y px)

xeA;

EX)=Y y Y, pW)

X €EA;

= > wp®

i XGA,’

=> > gx)pwx)

i X €A;

= g@pk)

and

This last step follows because the A; are disjoint and every x belongs to
some A;. [ |

It is worth pointing out explicitly that E[g(X)] # g[E(X)]; that is, the average
value of the function is not equal to the function of the average value. Suppose, for
example, that X takes on values 1 and 2, each with probability %, so E(X) = % Let
Y =1/X.Then E(Y)isclearly 1 x .5+ .5 x .5 =.75,but 1/E(X) = 2.
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Let us now apply Theorem A to find the average kinetic energy of a gas molecule.

E(Y) =/%mx2fx(x)dx

0

m2/m [, 12

1x
= > 3 x"e 22 dx
o 0

To evaluate the integral, we make the change of variables u = x?/20? to reduce
it to

2mo? [ V2gu g 2mo? r 5
we ™ du = =
VT oo NEd 2

Finally, using the facts F(%) =7 and ' (e + 1) = al'(a), we have

E(Y) = 3imo? -

Now suppose that Y = g(X, ..., X,), where X; have a joint distribution, and
that we want to find E(Y). We do not have to find the density or frequency function
of Y, which again could be a formidable task.

THEOREM B
Suppose that X, ..., X, are jointly distributed random variables and ¥ =
g§(Xy, ..., X,).
a. If the X; are discrete with frequency function p(xy, ..., x,), then
EXY)= > g@i....x)p(xr....x,)
Xyeeey Xn

provided that 3 |g(x1, ..., x,)|p(x1, ..., x,) < 00.

.....

b. If the X; are continuous with joint density function f(x, ..., x,), then
E(Y) = //~-~/g(x1, v X)) (X1, ey Xp)dxy - d g
provided that the integral with |g| in place of g converges.

Proof
The proof is similar to that of Theorem A. [ ]
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4.1.2

A stick of unit length is broken randomly in two places. What is the average length
of the middle piece?

We interpret this question to mean that the locations of the two break points are
independent uniform random variables U; and U,. Therefore, we need to compute
E|U, — U,|. Theorem B tells us that we do not need to find the density function of
|Uy — U,| and that we can just integrate |u; — u| against the joint density of U; and
Uz, f(ul, I/tz) = 1,0 <u; < 1,0 < U2 < 1.Thus,

1ol
E|U1—U2|=/ / luy — us| duy dusy
o Jo

1 uj 1 1
= / / (w1 — uy) dus duy +/ / (uy — uy) dus duy
o Jo 0o Ju

With some care, we find the expectation to be % This is in accord with the intu-
itive argument that the smaller of U; and U, should be % on the average and the

larger should be % on the average, which means that the average difference should
be 1. [ |
3

We note the following immediate consequence of Theorem B.

COROLLARY A

If X and Y are independent random variables and g and 4 are fixed functions,
then E[g(X)h(Y)] = {E[g(X)IH{E[h(Y)]}, provided that the expectations on
the right-hand side exist. [ |

In particular, if X and Y are independent, E(XY) = E(X)E(Y). The proof of
this corollary is left to Problem 29 of the end-of-chapter problems.

Expectations of Linear Combinations
of Random Variables

One of the most useful properties of the expectation is that it is a linear operation.
Suppose that you were told that the average temperature on July 1 in a certain location
was 70°F, and you were asked what the average temperature in degrees Celsius was.
You can simply convert to degrees Celsius and obtain g x 70 — 17.7 = 21.2°C.
The notion of the average value of a random variable, which we have defined as the
expected value of a random variable, behaves in the same fashion. If Y = a X +b, then
E(Y) = aE(X) + b. More generally, this property extends to linear combinations of
random variables.
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THEOREM A

If Xy, ..., X, are jointly distributed random variables with expectations E (X;)
and Y is a linear function of the X;, Y = a + Zl'f:] b; X;, then

EY)=a+) bEX)

7=l

Proof

We will prove this for the continuous case. The proof in the discrete case is parallel
and is left to Problem 24 at the end of this chapter. For notational simplicity, we
take n = 2. From Theorem B of Section 4.1.1, we have

E(Y) = / / e A B, o0 B

=a//f(x1,Xz)dxldxz-i-bl//xlf(xl,xz)dxldxz

+b2//x2 f 1, x2) dxy dx;

The first double integral of the last expression is merely the integral of the bivariate
density, which is equal to 1. The second double integral can be evaluated as

follows:
//le(xl’ X2)dx; dx; = /xl |:/f(xl: xz)dxz} dx,

— [ fuwoan
= E(X1)
A similar evaluation for the third double integral brings us to
E(Y)=a+ b E(X))+ bE(X>)

This proves the theorem once we check that the expectation is well defined, or
that

// la + bixi + baxs| f(x1, x2) dxydx, < 00
This can be verified using the inequality
la + bix1 + boxs| < lal + [billx1] + |b2]|x2]

and the assumption that the E(X;) exist. u

Theorem A is extremely useful. We will illustrate its utility with several examples.
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EXAMPLE A Suppose that we wish to find the expectation of a binomial random variable, Y. From
the binomial frequency function,

E(Y) = ”)kk | — pyt
() ; ( Lkt a=p)
It is not immediately obvious how to evaluate this sum. We can, however, represent
Y as the sum of Bernoulli random variables, X;, which equal 1 or 0 depending on
whether there is success or failure on the ith trial,

Y:i:m
i=1

Because E(X;) =0x (1 —p)+ 1 x p = p, it follows immediately that E(Y) = np.

An application of the binomial distribution and its expectation occurs in “shotgun
sequencing” in genomics, a method of trying to figure out the sequence of letters that
make up a long segment of DNA. It is technically too difficult to sequence the entire
segment at once if it is very long. The basic idea of shotgun sequencing is to chop
the DNA randomly into many small fragments, sequence each fragment, and then
somehow assemble the fragments into one long “contig.” The hope is that if there are
many fragments, their overlaps can be used to assemble the contig.

Suppose, then, that the length of the DNA sequence is G and that there are N
fragments each of length L. G might be at least 100,000 and L about 500. Assume that
the left end of each fragment is equally likely to be at positions 1,2, ..., G — L + 1.
What is the probability that a particular location x € {L, L + 1, ..., G} is covered
by at least one fragment? How many fragments are expected to cover a particular
location? (The positions {1, 2, ..., L — 1} are not included in this discussion because
the boundary effect makes them a little different; for example, the only fragment
that covers position 1 has its left end at position 1.) To answer these questions, first
consider a single fragment. The chance that it covers x equals the chance that its
left end is in one of the L locations {x — L + 1,x — L, ..., x}, and because the
location of the left end is uniform, this probability is

L L

TG-L+1 G
where the approximation holds because G >> L. Thus, the distribution of W, the
number of fragments that cover a particular location, is binomial with parameters N

p

and p.
From the binomial probability formula, the chance of coverage is
L N
PW=>0=1-PW=0=1- (1_5>

Since N is large and p is small, the distribution of W is nearly Poisson with parameter
L = Np = NL/G. From the Poisson probability formula, P(W = 0) ~ ¢ NE/G,
so the probability that a particular location is covered is approximately 1 — ¢=VE/G,
Observe that N L is the total length of all the fragments; the ratio N L/ G is called the
coverage. Calculations of this kind are thus useful in deciding how many fragments
to use. If the coverage is 8, for example, the chance that a site is covered is .9997.
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Overlap of fragments is important when trying to assemble them. Since W is a
binomial random variable, the expected number of fragments that cover a given site
is Np = NL/G, precisely the coverage.

We can also now answer this closely related question: How many sites do we
expect to be entirely missed? We will calculate this using indicator random variables:
let I, equal 1 if site x is missed and O elsewhere. Then

E(I)=1x P, =1)+0x P(I, =0) = e V/°,

The number of sites that are not covered is

and from the linearity of expectation

G
E(V)= Z E(I,) ~ Ge VMG,

x=L

The length of the human genome is approximately G = 3 x 10°, so with eight times
coverage, we would expect about a million sites to be missed. [ |

Coupon Collection

Suppose that you collect coupons, that there are n distinct types of coupons, and that
on each trial you are equally likely to get a coupon of any of the types. How many trials
would you expect to go through until you had a complete set of coupons? (This might
be a model for collecting baseball cards or for certain grocery store promotions.)

The solution of this problem is greatly simplified by representing the number of
trials as a sum. Let X be the number of trials up to and including the trial on which
the first coupon is collected: X; = 1. Let X, be the number of trials from that point up
to and including the trial on which the next coupon different from the first is obtained;
let X5 be the number of trials from that point up to and including the trial on which
the third distinct coupon is collected; and so on, up to X,,. Then the total number of
trials, X, is the sum of the X;, i =1, 2, ..., n.

We now find the distribution of X,. At this point, »r — 1 of n coupons have been
collected, so on each trial the probability of success is (n — r + 1)/n. Therefore, X,
is a geometric random variable, with E(X,) = n/(n — r + 1). (See Example B of
Section 4.1.) Thus,

n

E(X)=)Y_ E(X,)

For example, if there are 10 types of coupons, the expected number of trials necessary
to obtain at least one of each kind is 29.3.
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Finally, we note the following famous approximation:

"1
> ~=logn+y +e

r=I1

where log is the natural log or log, (unless otherwise specified, log means natural
log throughout this text), y is Euler’s constant, y = .57..., and ¢, approaches zero
as n approaches infinity. Using this approximation for n = 10, we find that the
approximate expected number of trials is 28.8. Generally, we see that the expected
number of trials grows at the rate n log n, or slightly faster than n. ]

Group Testing

Suppose that a large number, n, of blood samples are to be screened for a relatively
rare disease. If each sample is assayed individually, n tests will be required. On the
other hand, if each sample is divided in half and one of the halves is put into a pool
with all the other halves, the pooled lot can be tested. Then, provided that the test
method is sensitive enough, if this test is negative, no further assays are necessary
and only one test has to be performed. If the test on the pooled blood is positive, each
reserved half-sample can be tested individually. In this case, a total of n + 1 tests
will be required. It is therefore plausible, assuming that the disease is rare, that some
savings can be achieved through this pooling procedure.

To analyze this more quantitatively, let us first generalize the scheme and suppose
that the n samples are first grouped into m groups of k samples each, or n = mk.
Each group is then tested; if a group tests positively, each individual in the group is
tested. If X; is the number of tests run on the ith group, the total number of tests run
is N =>"", X;, and the expected total number of tests is

m

E(N)=>_ E(X))

i=1

Let us find E(X;). If the probability of a negative on any individual sample is p, then
the X; take on the value 1 with probability p* or the value k + 1 with probability
1 — pk. Thus,

E(X;) = p" + (k+ 1)1 —pH
=k+1—kpt

‘We now have

E(N)ZM(k+1)—mkpk:n(l+%_pk>

Recalling that n tests are necessary with no pooling, we see that the factor (14 1/k —
p¥) is the average number of samples used in group testing as a proportion of 7.
Figure 4.2 shows this proportion as a function of k for p = .99. From the figure, we
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Proportion
o
T

FIGURE 4.2 The proportion of n in the average number of samples tested using
group testing as a function of k.

see that for group testing with a group size of about 10, only 20% of the number of
tests used with the straightforward method are needed on the average. [ |

Counting Word Occurrences in DNA Sequences
Here we consider another example from genomics, and one that again illustrates
the power of using indicator random variables. In searching for patterns in DNA
sequences, there might be reason to expect that a “word” such as TATA would occur
more frequently than expected in a random sequence. Or suppose we want to identify
regions of a DNA sequence in which the occurrence of the word is unusually large.
To quantify these ideas, we need to specify the meaning of random. In this example,
we will take it to mean that the sequence is randomly composed of the letters A,C,G,
and T in the sense that the letters at sites are independent and, at every site, each letter
has probability le'

We also need to be careful to specify how we count. Consider the following
sequence

ACTATATAGATATA

We will count overlaps, so in the preceding sequence, TATA occurs three times. Now
suppose that the sequence is of length N and that the word is of length ¢g. Let I,
be an indicator random variable taking on the value 1 if the word begins at position
n and 0 otherwise: P(I, = 1) = (1) from the assumption of independence and
E(I,) = P(I, = 1). Now the total number of times the word occurs is

N—qg+1

W:Z]In
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4.2

and

N—g+1

1 q
EW)= 3 E()=N-q+1) (4)

n=1

Note that the 7, are not independent—for example, in the case of the word TATA,
if ; = 1, then I, = 0. Thus W is not a binomial random variable. But despite the
lack of independence, we can find E(W) by expressing W as a linear combination of
indicator variables. u

Investment Portfolios

An investor plans to apportion an amount of capital, Cy, between two investments,
placing a fraction w7, 0 < & < 1, in one investment and a fraction 1 — 7 in the
other for a fixed period of time. Denoting the returns (final value divided by initial
value) on the investments by R; and R,, her capital at the end of the period will be
Ci =aCyR; + (1 — m)CyR,. Her return will then be

_CO
=7TR1+(1—7T)R2

R

Suppose that the returns are unknown, as would be the case if they were stocks, for
example, and that they are hence modeled as random variables, with expected values
E(R;) and E(R;). Then her expected return is

ER) =mE(R) + (1 —m)E(R,)
How should she choose 7 ? A simple solution would apparently be to choose 7 = 1

if E(Ry) > E(R,) and m = 0 otherwise. But there is more to the story as we will see
later. [ ]

Variance and Standard Deviation

The expected value of a random variable is its average value and can be viewed as
an indication of the central value of the density or frequency function. The expected
value is therefore sometimes referred to as a location parameter. The median of
a distribution is also a location parameter, one that does not necessarily equal the
mean. This section introduces another parameter, the standard deviation of a random
variable, which is an indication of how dispersed the probability distribution is about
its center, of how spread out on the average are the values of the random variable about
its expectation. We first define the variance of a random variable and then define the
standard deviation in terms of the variance.
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DEFINITION
If X is a random variable with expected value E(X), the variance of X is
Var(X) = E{[X — E(X)I}

provided that the expectation exists. The standard deviation of X is the square
root of the variance. |

If X is a discrete random variable with frequency function p(x) and expected
value u = E(X), then according to the definition and Theorem A of Section 4.1.1,

Var(X) = Z (i — )’ p(x;)

whereas if X is a continuous random variable with density function f(x) and
E(X)=n

oo
Var(X) = / (x =0 f(x) dx
—00
The variance is often denoted by o and the standard deviation by o. From
the preceding definition, the variance of X is the average value of the squared
deviation of X from its mean. If X has units of meters, for example, the vari-
ance has units of meters squared, and the standard deviation has units of meters.
Although we are often interested ultimately in the standard deviation rather than
the variance, it is usually easier to find the variance first and then take the square
root.
The variance of a random variable changes in a simple way under linear trans-
formations.

THEOREM A
If Var(X) exists and ¥ = a + bX, then Var(Y) = b*Var(X).

Proof
Since E(Y) = a + bE(X),

E[(Y — E(Y))*] = E{la+bX —a — bE(X)]*}
= E{p’[X — E(X)T)
=P’ E{[X — EX)I"}
= b*Var(X) ]

This result seems reasonable once you realize that the addition of a constant does
not affect the variance, since the variance is a measure of the spread around a center
and the center has merely been shifted.
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The standard deviation transforms in a natural way: oy = |b|ox. Thus, if the units
of measurement are changed from meters to centimeters, for example, the standard
deviation is simply multiplied by 100.

Bernoulli Distribution

If X has a Bernoulli distribution—that is, X takes on values 0 and 1 with probability
1 — p and p, respectively—then we have seen (Example A of Section 4.1.2) that
E(X) = p. By the definition of variance,

Var(X) = (0—p)* x (1= p)+ (1 —p)* x p
=p’=p +p-2p+p’
= p(l—p)

Note that the expression p(1 — p) is a quadratic with a maximum at p = % Ifp
is 0 or 1, the variance is 0, which makes sense since the probability distribution is
concentrated at a single point and the random variable is not variable at all. The
distribution is most dispersed when p = % ]

Normal Distribution
We have seen that £(X) = . Then

1 a-w?

1 [0.¢)
Var(X) = E[(X — p)*] = ——= / x —p)e 2 dx
(X) X —w e (x — )
Making the change of variables z = (x — )/ changes the right-hand side to

2 00
o 2
/ Zze—z /2 dz
V2T )

Finally, making the change of variables u = z>/2 reduces the integral to a gamma
function, and we find that Var(X) = o>. ]

The following theorem gives an alternative way of calculating the variance.

THEOREM B

The variance of X, if it exists, may also be calculated as follows:

Var(X) = E(X*) — [E(X)]?
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Proof
Denote E(X) by u.

Var(X) = E[(X — )’
= EX®>-2uX +u?

By the linearity of the expectation, this becomes
Var(X) = E(X?) —2pE(X) + p*
= E(X*) —2u° +
= E(X*) —p?

as was to be shown. [ |

According to Theorem B, the variance of X can be found in two steps: First find
E(X), and then find E(X?).

Uniform Distribution
Let us apply Theorem B to find the variance of a random variable that is uniform on
[0, 1]. We know that E(X) = 1; next we need to find E (X?):

1
1
E(X%) :/ x2dx = =
0 3

1 1\ 1
Var(X)=§—<—> = — m

We thus have

It was stated earlier that the variance or standard deviation of a random variable
gives an indication as to how spread out its possible values are. A famous inequality,
Chebyshev’s inequality, lends a quantitative aspect to this indication.

THEOREM C Chebyshev’s Inequality

Let X be a random variable with mean p and variance o%. Then, for any ¢ > 0,

o2
Pl =gl = a5 5

Proof

LetY = (X —p)% Then E(Y) = o2, and the result follows by applying Markov’s
inequality to Y. ]
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Theorem C says that if o2 is very small, there is a high probability that X will
not deviate much from p. For another interpretation, we can set t = ko so that the
inequality becomes

1
POX —ul z ko) = .7

For example, the probability that X is more than 40 away from g is less than or

equal to % These results hold for any random variable with any distribution provided

the variance exists. In particular cases, the bounds are often much narrower. For

example, if X is normally distributed, we find from tables of the normal distribution

that P(|X — | > 20) = .05 (compared to % obtained from Chebyshev’s inequality).
Chebyshev’s inequality has the following consequence.

COROLLARY A
If Var(X) = 0, then P(X = pu) = 1.

Proof

We will give a proof by contradiction. Suppose that P(X = u) < 1. Then, for
some ¢ > 0, P(|X — | > ¢) > 0. However, by Chebyshev’s inequality, for any
e >0,

P(X —pl=¢e)=0 [

Investment Portfolios

We continue Example E in Section 4.1.2. Suppose that one of the two investments
is risky and the other is risk free. The first might be a stock and the other an insured
savings account. The stock has areturn R, which is modeled as arandom variable with
expectation @, = 0.10 and standard deviation oy = 0.075. The standard deviation is
a measure of risk—a large standard deviation means that the returns fluctuate a lot
so that the investor might be lucky and get a large return, but might also be unlucky
and lose a lot. Suppose that the savings account has a certain return R, = 0.03. The
expected value of this return is u, = 0.03 and its standard deviation is O—it is risk
free. If the investor places a fraction 7| in the stock and a fraction 7, = 1 — 7y in the
savings account, her return is

R=mR +{—-m)R,
and her expected return is
ER) =mp + (1 —m)p

Since (4 > [o, her expected return is maximized by m; = 1, putting all her money
in the stock. However, this point of view is too narrow; it does not take into account
the risk of the stock. By Theorem A

Var(R) = wjo}
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and the standard deviation of the return is oy = m 0,. The larger 7, the larger
the expected return, but also the larger the risk. In choosing 7y, the investor has to
balance the risk she is willing to take against the expected gain; the desired balance
will be different for different investors. If she is risk averse, she will choose a small
value of 7y, being leery of volatile investments. By tracing out the expected return
and the standard deviation as functions of 771, she can strike a balance with which she
is comfortable. [ |

A Model for Measurement Error

Values of physical constants are not precisely known but must be determined by
experimental procedures. Such seemingly simple operations as weighting an object,
determining a voltage, or measuring an interval of time are actually quite complicated
when all the details and possible sources of error are taken into account. The National
Institute of Standards and Technology (NIST) in the United States and similar agen-
cies in other countries are charged with developing and maintaining measurement
standards. Such agencies employ probabilists and statisticians as well as physical
scientists in this endeavor.

A distinction is usually made between random and systematic measurement
errors. A sequence of repeated independent measurements made with no deliberate
change in the apparatus or experimental procedure may not yield identical values,
and the uncontrollable fluctuations are often modeled as random. At the same time,
there may be errors that have the same effect on every measurement; equipment may
be slightly out of calibration, for example, or there may be errors associated with the
theory underlying the method of measurement. If the true value of the quantity being
measured is denoted by x(, the measurement, X, is modeled as

X=x0+ﬂ+8

where f is the constant, or systematic, error and ¢ is the random component of the
error; ¢ is a random variable with E(¢) = 0 and Var(e) = o>. We then have

E(X)=x0+pB
and
Var(X) = o>

B is often called the bias of the measurement procedure. The two factors affecting the
size of the error are the bias and the size of the variance, 2. A perfect measurement
would have 8 = 0 and 0> = 0.

Measurement of the Gravity Constant

This and the next example are taken from an interesting and readable paper by Youden
(1972), astatistician at NIST. Measurement of the acceleration due to gravity at Ottawa
was done 32 times with each of two different methods (Preston-Thomas et al. 1960).
The results are displayed as histograms in Figure 4.3. There is clearly some systematic
difference between the two methods as well as some variation within each method. It
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Dec 1959 Mean = 980.6124 — cm/sec?
32 Drops Standard deviation = * 0.6 mgal
Rule No. 2 Maximum spread = 2.9 mgal
Aug 1958 | Mean = 980.6139 — cm/sec?
32 Drops | Standard deviation = * 0.9 mgal
Rule No. 1 || Maximum spread = 4.1 mgal

[
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FIGURE 4.3 Histograms of two sets of measurements of the acceleration due to
gravity.

appears that the two biases are unequal. The results from Rule 1 are more scattered
than those of Rule 2, and their standard deviation is larger. [ |

An overall measure of the size of the measurement error that is often used is the
mean squared error, which is defined as

MSE = E[(X — x0)*]

The mean squared error, which is the expected squared deviation of X from x,, can
be decomposed into contributions from the bias and the variance.

THEOREM A
MSE = g2 + o2
Proof

From Theorem B of Section 4.2,
E[(X — x0)*] = Var(X — xo) + [E(X — xo))’
= Var(X) + p*
=0’ +p u
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Measurements are often reported in the form 102 £ 1.6, for example. Although it
is not always clear what precisely is meant by such notation, 102 is the experimentally
determined value and 1.6 is some measure of the error. It is often claimed or hoped that
B is negligible relative to o, and in that case 1.6 represents ¢ or some multiple of o.
In the graphical presentation of experimentally obtained data, error bars, usually of
width o or some multiple of o, are placed around measured values. In some cases,
efforts are made to bound the magnitude of §, and the bound is incorporated into the
error bars in some fashion.

Measurement of the Speed of Light

Figure 4.4, taken from McNish (1962) and discussed by Youden (1972), shows 24
independent determinations of the speed of light, ¢, with error bars. The right col-
umn of the figure contains codes for the experimental methods used to obtain the
measurements; for example, G denotes a method called the geodimeter method.
The range of values for ¢ is about 3.5 km/sec, and many of the errors are less than
.5 km/sec. Examination of the figure makes it clear that the error bars are too small and
that the spread of values cannot be accounted for by different experimental techniques
alone—the geodimeter method produced both the smallest and the next to largest value
for c. Youden remarks, “Surely the evidence suggests that individual investigators are
unable to set realistic limits of error to their reported values.” He goes on to suggest

that the differences are largely a result of calibration errors for equipment. [ |
Designation Method
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FIGURE 4.4 A plot of 24 independent determinations of the speed of light with the
reported error bars. The investigator or country is listed in the left column, and the
experimental method is coded in the right column.
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Covariance and Correlation

The variance of a random variable is a measure of its variability, and the covariance
of two random variables is a measure of their joint variability, or their degree of asso-
ciation. After defining covariance, we will develop some of its properties and discuss
a measure of association called correlation, which is defined in terms of covariance.
You may find this material somewhat formal and abstract at first, but as you use them,
covariance, correlation, and their properties will begin to seem natural and familiar.

DEFINITION

If X and Y are jointly distributed random variables with expectations py and py,
respectively, the covariance of X and Y is

Cov(X, Y) = E[(X — ux)(Y — py)]

provided that the expectation exists. [ ]

The covariance is the average value of the product of the deviation of X from
its mean and the deviation of Y from its mean. If the random variables are positively
associated—that is, when X is larger than its mean, Y tends to be larger than its mean
as well—the covariance will be positive. If the association is negative—that is, when
X is larger than its mean, Y tends to be smaller than its mean—the covariance is
negative. These statements will be expanded in the discussion of correlation.

By expanding the product and using the linearity of the expectation, we obtain
an alternative expression for the covariance, paralleling Theorem B of Section 4.2:

Cov(X, Y) = E(XY — Xpy — Yux + uxpy)
= E(XY) - EX)uy — E(Y)ux + puxpty
= E(XY) — EXX)E(Y)
Inparticular, if X and Y are independent, then E(XY) = E(X)E(Y)andCov(X, Y) =

0 (but the converse is not true). See Problems 59 and 60 at the end of this chapter for
examples.

Let us return to the bivariate uniform distributions of Example C in Section 3.3. First,
note that since the marginal distributions are uniform, E(X)=E(Y) = % For the
case o = —1, the joint density of X and Y is f(x, y) = (2x +2y —4xy),0 <x <1,
0<y=1

E(XY)://xyf(x, y)dxdy

1l
=/ / xy(2x 4+ 2y —4xy)dx dy

0o Jo

2

9
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Thus,
Cov(X, ¥)=2—(}) (%) =-1

The covariance is negative, indicating a negative relationship between X and Y. In
fact, from Figure 3.5, we see that if X is less than its mean, %, then Y tends to be
larger than its mean, and vice versa. A similar analysis shows that when o = 1,
Cov(X, Y) = 5. ]

We will now develop an expression for the covariance of linear combinations of
random variables, proceeding in a number of small steps. First, since E(a + X) =
a+ E(X),

Covia+X,Y)=E{la+ X —E(a+ X)I[Y —EX)]}
= E{[X - E(X)][Y — E(M)]}
= Cov(X, Y)

Next, since E(aX) = aE(X),

Cov(aX, bY) = E{[laX —aE(X)][bY — bE(Y)]}
= E{ab[X — E(XOIY — E(M)]}
=abE{[X — E(XIY — E(Y)]}
=abCov(X, Y)

Next, we consider Cov(X, Y + Z):

Cov(X, Y+ Z) = E((X - EONY — E(Y)] + [Z — E(D)]})
= E{[X - EXOIY — EM]+[X - EXI[Z - E(Z)]}
= E{[X - EX)IY - EM]}
+ E{[X - E(X][Z - E(D]}
= Cov(X, Y) + Cov(X, Z2)

We can now put these results together to find Cov(aW + bX, cY +dZ):

Cov(aW +bX, cY +dZ) = Cov(aW + bX, c¢Y) + Cov(aW + bX, dZ)
= Cov(aW, cY) + Cov(bX, cY) + Cov(aW, dZ)
+ Cov(bX, dZ)
=acCov(W, Y) + bcCov(X, Y) + ad Cov(W, Z)
+ bd Cov(X, Z)

In general, the same kind of argument gives the following important bilinear
property of covariance.
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THEOREM A
Suppose that U = a + Y /_, b;X;and V =c+ 7, d;Y;. Then

Cov(U, V)= _ Y bid;Cov(X;, Y;) -

i=1 j=I

This theorem has many applications. In particular, since Var(X) = Cov(X, X),
Var(X 4+ Y) =Cov( X+ Y, X+7Y)
= Var(X) + Var(Y) + 2Cov(X, Y)

More generally, we have the following result for the variance of a linear combination
of random variables.

COROLLARY A
Var(a + er;l b; X;) = er;l Z?=1 b,’bjCOV(X,‘, XJ) |

If the X; are independent, then Cov(X;, X;) = 0 fori # j, and we have another
corollary.

COROLLARY B
Var(}!_, X;) =+, Var(X;), if the X; are independent. ]

Corollary B is very useful. Note that £} X;) = > E(X;) whether or not the
X; are independent, but it is generally not the case that Var(d_ X;) = > Var(X;).

Finding the variance of a binomial random variable from the definition of variance and
the frequency function of the binomial distribution is not easy (try it). But expressing
a binomial random variable as a sum of independent Bernoulli random variables
makes the computation of the variance trivial. Specifically, if ¥ is a binomial random
variable, it can be expressedas Y = X+ X, +- - -+ X,,, where the X; are independent

Bernoulli random variables with P(X; = 1) = p. We saw earlier (Example A in
Section 4.2) that Var(X;) = p(1 — p), from which it follows from Corollary B that
Var(Y) = np(1 — p). [ |

Random Walk
A drunken walker starts out at a point x( on the real line. He takes a step on length X,
which is a random variable with expected value x and variance o, and his position
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at that time is S(1) = xo + X;. He then takes another step of length X,, which is
independent of X, with the same mean and standard deviation. His position after n
such steps is S(n) = xo + >, X;. Then

E(S(n) = xo+ E (Z X,—) =xo+nu

i=1

Var(S(n)) = Var (Z Xi> = no?

i=1
He thus expects to be at the position x, + n with an uncertainty as measured by the
standard deviation of /no. Note that if u > 0, for example, for large values of n
he will be to the right of the point xy with very high probability (using Chebyshev’s
inequality).

Random walks have found applications in many areas of science. Brownian mo-
tion is a continuous time version of a random walk with the steps being normally
distributed random variables. The name derives from observations of the biologist
Robert Brown in 1827 of the apparently spontaneous motion of pollen grains sus-
pended in water. This was later explained by Einstein to be due to the collisions of
the grains with randomly moving water molecules.

The theory of Brownian motion was developed by Louis Bachelier in 1900 in his
PhD thesis “The theory of speculation,” which related random walks to the evolution
of stock prices. If the value of a stock evolves through time as a random walk, its
short-term behavior is unpredictable. The efficient market hypothesis states that stock
prices already reflect all known information so that the future price is random and
unknowable. The solid line in Figure 4.5 shows the value of the S&P 500 during
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FIGURE 4.5 The solid line is the value of the S&P 500 during 2003. The dashed
lines are simulations of random walks.
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2003. The average of the increments (steps) was 0.81 and the standard deviation was
9.82. The dashed lines are simulations of random walks with the same intial value
and increments that were normally distributed random variables with © =0.81 and
o =9.82. Notice the long stretches of upturns and downturns that occurred in the
random walks as the markets reacted in ways that would have been explained ex post
facto by analysts. See Malkiel (2004) for a popular exposition of the implications of
random walk theory for stock market investors. [ |

The correlation coefficient is defined in terms of the covariance.

DEFINITION

If X and Y are jointly distributed random variables and the variances and covari-
ances of both X and Y exist and the variances are nonzero, then the correlation
of X and Y, denoted by p, is

_ Cov(X, Y)
P = Nar () var(Y)

Note that because of the way the ratio is formed, the correlation is a dimension-
less quantity (it has no units, such as inches, since the units in the numerator and
denominator cancel). From the properties of the variance and covariance that we have
established, it follows easily that if X and Y are both subjected to linear transforma-
tions (such as changing their units from inches to meters), the correlation coefficient
does not change. Since it does not depend on the units of measurement, p is in many
cases a more useful measure of association than is the covariance.

Let us return to the bivariate uniform distribution of Example A. Because X and Y
are marginally uniform, Var(X) = Var(Y) = % In the one case (¢« = —1), we found
Cov(X, Y) = —31—6, SO

p= —% x 12 = —%
1

362 SO the correlation is

In the other case (o = 1), the covariance was

W=

The following notation and relationship are often useful. The standard deviations
of X and Y are denoted by ox and oy and their covariance by oxy. We thus have

Oxy

OxOy

and
Oxy = POxOy

The following theorem states some further properties of p.
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THEOREM B

—1 < p < 1. Furthermore, p = £1 if and only if P(Y = a + bX) = 1 for some
constants a and b.

Proof

Since the variance of a random variable is nonnegative,

X Y
0 < Var (— == —>
Ox Oy

X Y X Y
=Var| — |+ Var| — ) +2Cov | —, —
Ox Oy Ox Oy

_ Var(X) Var(Y) 2Cov(X, Y)
B 0')2( O‘I% OxOy

=2(1+ p)

From this, we see that p > —1. Similarly,

which by Corollary A of Section 4.2 implies that

X Y
p<___=c)=1
Oy Oy

for some constant, c¢. This is equivalent to P(Y = a + bX) = 1 for some a and
b. A similar argument holds for p = —1. |

Investment Portfolio

We are now in a position to further develop the investment theory discussed in Sec-
tion 4.1.2, Example E, and Section 4.2, Example D. Please review those examples be-
fore continuing. We first consider the simple example of two securities, assuming that
they have the same expected returns (1 = p, = w and their returns are uncorrelated:
o0;j = Cov(R;, R;) = 0. For a portfolio (7, 1 — ), the expected return is

ER@m)=rp+0-—mu=pn

so that when considering expected return only, the choice of 7 makes no difference.
However, taking risk into account,

Var(R(n)) = nof + (1 — m)%03.
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Minimizing this with respect to 7 gives the optimal portfolio

2
)

T, = —F
OPL™ 524 52
For example, if the investments are equally risky, oy = 0, = o, then 7 = 1/2, so the
best strategy is to split her total investment equally between the two securities. If she
does so, the variance of her return is, by Theorem A,
2
o
1 —
Var(R (3)) = 5
whereas if she put all her money in one security, the variance of her return would
be o2, The expected return is the same in both cases. This is a particularly simple
example of the value of diversification of investments.
Suppose now that the two securities do not have the same expected returns,
1 < Wo. Let the standard deviations of the returns be o and o0,; usually less risky
investments have lower expected returns, oy < o,. Furthermore, the two returns may
be correlated: Cov(R;, R;) = poy0,. Corresponding to the portfolio (i, 1 — ), we
have expected return

ER(m) =7+ (1 —m)ua
and the variance of the return is
Var(R(7)) = o} +2n(1 — w)pojoy + (1 — w)*0}

Comparing this to the result when the returns were independent, we see the risk is
lower when the returns are independent than when they are positively correlated. It
would thus be better to invest in two unrelated or weakly related market sectors than
to make two investments in the same sector. In deciding the choice of the portfolio
vector, the investor can study how the risk (the standard deviation of R (7)) changes
as the expected return increases, and balance expected return versus risk.

In actual investment decisions, many more than two possible investments are
involved, but the basic idea remains the same. Suppose there are n possible invest-
ments. Let the portfolio weights be denoted by the vector &7 = (1, 72, ..., 7,). Let
E(R;) = ni, Cov(R;, R;) = 0y; (so, in particular, Var(R;) is denoted by o;;), then

E(R(1) =) i

and

Var(R(m)) = z”: zn:mma,-j.

i=1 j=1

The investment decision, the choice of the portfolio vector i, is often couched as
that of maximizing expected return subject to the risk being less than some value the
individual investor is willing to tolerate. Some investors are more risk averse than
others, so the portfolio vectors will differ from investor to investor. Equivalently, the
decision may be phrased as that of finding the portfolio vector with the minimum risk
subject to a desired return; there may well be many portfolio choices that give the
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FIGURE 4.6 The benefit of diversification. The monthly average return from January
1992 to June 1994 of 13 stock markets, plotted against their standard deviations. The
performance of the Standard and Poor's 500 index of U.S. stocks is plotted for
comparison.

same expected return, and the wise investor would choose the one among them that
had the lowest risk.

As a general rule, risk is reduced by diversification and can be decreased with
only a small sacrifice of returns. Figure 4.6 from Bernstein (1996, p. 254) illustrates
this point empirically. The point labeled “Index” shows the monthly average versus
standard deviation for an investment that was equally weighted across all the markets.
A reasonably high return with relatively little risk would thus have been obtained by
spreading investments equally over the 13 stock markets. In fact, the risk is less than
that of any of the individual markets. Note that these emerging markets were riskier
than the U.S. market, but that they were more profitable. ]

Bivariate Normal Distribution

We will show that the covariance of X and Y when they follow a bivariate normal
distribution is poyoy, which means that p is the correlation coefficient. The covari-
ance is

Cov(X, Y):/ / (x — i) (v — y) fx, y)dx dy

Making the changes of variables u = (x — ux)/ox and v = (y — uy)/oy changes
the right-hand side to

oo oo
1
&/ / uv exp {—72(1424‘”2_210“”) du dv
27.[ /1_p2 —o0 J—o0 2(1_p)
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As in Example F in Section 3.3, we use the technique of completing the square to
rewrite this expression as

_oxor % vexp(—v’/2) (/ u ex {—;(u—pv)z] d“) dv
an —o0 P —00 P 2(1 - p?)

The inner integral is the mean of an N[pv, (1 — p?)] random variable, lacking only
the normalizing constant [27 (1 — p2)]~'/2, and we thus have

e}

OxO o
Cov(X, Y)= poXIY / v2e ™V 2dy = pOxOy

V2r

as was to be shown. [ ]

oo

The correlation coefficient p measures the strength of the linear relationship
between X and Y (compare with Figure 3.9). Correlation also affects the appearance
of a scatterplot, which is constructed by generating n independent pairs (X;, Y;),
where i = 1, ..., n, and plotting the points. Figure 4.7 shows scatterplots of 100
pairs of pseudorandom bivariate normal random variables for various values of p.
Note that the clouds of points are roughly elliptical in shape.

FIGURE 4.7 Scatterplots of 100 independent pairs of bivariate normal random
variables, (@) p =0, (b) p = .3, (c) p = .6, (d) p = .9.
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Conditional Expectation and Prediction

Definitions and Examples

In Section 3.5, conditional frequency functions and density functions were defined.
We noted that these had the properties of ordinary frequency and density functions. In
particular, associated with a conditional distribution is a conditional mean. Suppose
that Y and X are discrete random variables and that the conditional frequency function
of Y given x is pyx(y|x). The conditional expectation of ¥ given X = x is

EY|X=x)=) ypyx(ylx)
y
For the continuous case, we have

EY|X =x) = /ny|x(yIX)dy

More generally, the conditional expectation of a function 4 (Y) is

Eh(V)|X =x] = /h(y)fnx(yIX)dy

in the continuous case. A similar equation holds in the discrete case.

Consider a Poisson process on [0, 1] with mean X, and let N be the number of points
in [0, 1]. For p < 1, let X be the number of points in [0, p]. Find the conditional
distribution and conditional mean of X given N = n.

We first find the joint distribution: P(X = x, N = n), which is the probability
of x events in [0, p] and n — x events in [p, 1]. From the assumption of a Poisson
process, the counts in the two intervals are independent Poisson random variables
with parameters pA and (1 — p)A, so

(pA)'e P [(1 = p)al're (=1
x! (n—x)!

pxny(x, n) =

The marginal distribution of N is Poisson, so the conditional frequency function of
X is, after some algebra,

pXN(x7 n)
pn(n)
n!
Xn—x?

pxiv(ln) =
(= p)

This is the binomial distribution with parameters n and p. The conditional expectation
is thus by Example A of Section 4.1.2, np. [ ]
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EXAMPLE B

Bivariate Normal Distribution
From Example C in Section 3.5.2, if Y and X follow a bivariate normal distribution,
the conditional density of Y given X is
2
Oy
y— iy —p—x —ux)
Ox

1 1
oy/2m(1 — p?) 2 (1 — p?)

Srix(ylx) =

This is a normal density with mean py + p(x — jtx)oy /oy and variance o2(1 — p?).
The former is the conditional mean and the latter the conditional variance of Y given
X =x.

Note that the conditional mean is a linear function of X and that as |p| increases,
the conditional variance decreases; both of these facts are suggested by the elliptical
contours of the joint density. To see this more exactly, consider the case in which
ox = oy = land uy = py = 0. The contours then are ellipses satisfying

p°x? —2pxy + y* = constant

The major and minor axes of such an ellipse are at 45° and 135°. The conditional
expectation of Y given X = x is the line y = px; note that this line does not lie along
the major axis of the ellipse. Figure 4.8 shows such a bivariate normal distribution
with p = 0.5. The curved lines of the bivariate density correspond to the conditional
density of Y given various values of x, but they are not normalized to integrate to
1. The contours of the bivariate normal are the ellipses shown in the xy plane as
dashed curves, with the major axis shown by the straight dashed line. The conditional
expectation of Y given X = x is shown as a function of x by the solid line in the
plane. Note that it is not the major axis of the ellipse.

This phenomenon was noted by Sir Francis Galton (1822-1911) who studied
the relationship of the heights of sons to that of their fathers. He observed that

Sxy)

FIGURE 4.8 Bivariate normal density with correlation, p = 0.5. The conditional
expectation of Y given X = x is shown as the solid line in the xy plane.
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sons of very tall fathers were shorter on average than their fathers and that sons
of very short fathers were on average taller. The empirical relationship is shown in
Figure 14.19. ]

Assuming that the conditional expectation of ¥ given X = x exists for every
x in the range of X, it is a well-defined function of X and hence is a random
variable, which we write as E(Y|X). For instance, in Example A we found that
E(X|N = n) = np; thus, E(X|N) = Np is a random variable that is a function of
N. Provided that the appropriate sums or integrals converge, this random variable has
an expectation and a variance. Its expectation is E[ E (Y| X)]; for this expression, note
that since £ (Y| X) is a random variable that is a function of X, the outer expectation
can be taken with respect to the distribution of X (Theorem A of Section 4.1.1). The
following theorem says that the average (expected) value of ¥ can be found by first
conditioning on X, finding E (Y | X), and then averaging this quantity with respectto X.

THEOREM A
E(Y) = E[E(Y|X)].

Proof

We will prove this for the discrete case. The continuous case is proved similarly.
Using Theorem 4.1.1A we need to show that

E(Y) =Y E(Y|X =x)px(x)

where

EY|X =x) =Y ypyx(ylx)
.

Interchanging the order of summation gives us

Y EXIX=x)pxx) =y Y prx(ylx)px(x)
x y X

(It can be shown that this interchange can be made.) From the law of total
probability, we have

pr(y) = Z prix(y|x) px (x)

Therefore,

STy prixOpx @) =Y ypr(y) = E(Y) n
y x y

Theorem A gives what might be called a law of total expectation: The ex-
pectation of a random variable Y can be calculated by weighting the conditional
expectations appropriately and summing or integrating.
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EXAMPLE C

EXAMPLE D

Suppose that in a system, a component and a backup unit both have mean lifetimes
equal to . If the component fails, the system automatically substitutes the backup
unit, but there is probability p that something will go wrong and it will fail to do so.
Let T be the total lifetime, and let X = 1 if the substitution of the backup takes place
successfully, and X = 0 if it does not. Thus the total lifetime is the lifetime of the
first component if the backup fails and is the sum of the lifetimes of the original and
the backup units if the backup is successfully made. Then

E(TIX=1)=2u
E(TIX=0)=pu

Thus,

ET)=E(TIX=DPX=D+ETIX=0PX=0=pu2—p) N

Random Sums
This example introduces sums of the type

T =

N
Xi

1

1

where N is arandom variable with a finite expectation and the X; are random variables
that are independent of N and have the common mean E(X). Such sums arise in a
variety of applications. An insurance company might receive N claims in a given
period of time, and the amounts of the individual claims might be modeled as random
variables X, X», ....Therandom variable N could denote the number of customers
entering a store and X; the expenditure of the ith customer, or N could denote the
number of jobs in a single-server queue and X; the service time for the ith job.
For this last case, T is the time to serve all the jobs in the queue. According to
Theorem A,

E(T) = E[E(T|N)]
Since E(T'|N =n) =nE(X), E(T|N) = NE(X) and thus
E(T)=E[NE(X)]=E(N)E(X)
This agrees with the intuitive guess that the average time to complete N jobs, where

N is random, is the average value of N times the average amount of time to complete
a job. ]

We have seen that the expectation of the random variable E(Y|X) is E(Y). We
now find its variance.
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THEOREM B
Var(Y) = Var[E(Y|X)] + E[Var(Y|X)].

Proof
We will explain what is meant by the notation in the course of the proof. First,
Var(Y|X = x) = EXYX =x) — [E(Y)|X = x)]?

which is defined for all values of x. Thus, just as we defined E(Y|X) to be a
random variable by letting X be random, we can define Var(Y|X) as a random
variable. In particular, Var(Y |X) has the expectation E[Var(Y|X)]. Since

Var(Y|X) = E(Y*|X) — [EY|X)T?
E[Var(Y|X)] = E[E(Y?|X)] — E{[E(Y|X)]*}

Also,
Var[E(Y|X)] = E{[E(Y| X))’} —{E[E(Y|X)]}
The final piece that we need is
Var(Y) = E(Y?) — [E(Y)]?
= E[E(Y?|X)] —{E[E(Y|X)]
by the law of total expectation. Now we can put all the pieces together:
Var(Y) = E[E(Y?|X)] — {E[E(Y|X)]}’
= E[E(Y’|X)] — E{[E(Y|X)]’} + E{[E(Y| X))’} — {E[E(Y|X)]}
= E[Var(Y|X)] + Var[E(Y|X)] -

Random Sums

Let us continue Example D but with the additional assumptions that the X; are inde-
pendent random variables with the same mean, E(X), and the same variance, Var(X),
and that Var(N) < oo. According to Theorem B,

Var(T) = E[Var(T|N)] + Var[E(T|N)]

Because E(T|N) = NE(X),

Var[E(T|N)] = [E(X)*Var(N)

Also, since Var(T|N =n) = Var(Z:'=l X;) = nVar(X),

Var(T|N) = N Var(X)

and

E[Var(T|N)] = E(N)Var(X)
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4.4.2

We thus have
Var(T) = [E(X)]*Var(N) + E(N)Var(X)

If N is fixed, say, N = n, then Var(T') = n Var(X). Thus, we see from the preceding
equation that extra variability occurs in 7" because N is random.

As a concrete example, suppose that the number of insurance claims in a certain
time period has expected value equal to 900 and standard deviation equal to 30, as
would be the case if the number were a Poisson random variable with expected value
900. Suppose that the average claim value is $1000 and the standard deviation is $500.
Then the expected value of the total, T, of the claims is E(7T) = $900,000 and the
variance of T is

Var (T) = 1000? x 900 4+ 900 x 500>
=1.125 x 10°

The standard deviation of T is the square root of the variance, $33,541. The insurance
company could then plan on total claims of $900,000 plus or minus a few standard
deviations (by Chebyshev’s inequality). Observe that if the total number of claims
were not variable but were fixed at N = 900, the variance of the total claims would
be given by E(N)Var(X) in the preceding expression. The result would be a standard
deviation equal to $15,000. The variability in the number of claims thus contributes
substantially to the uncertainty in the total. ]

Prediction

This section treats the problem of predicting the value of one random variable from
another. We might wish, for example, to measure the value of some physical quan-
tity, such as pressure, using an instrument. The actual pressures to be measured are
unknown and variable, so we might model them as values of a random variable, Y.
Assume that measurements are to be taken by some instrument that produces a re-
sponse, X, related to Y in some fashion but corrupted by random noise as well; X
might represent current flow, for example. ¥ and X have some joint distribution, and
we wish to predict the actual pressure, Y, from the instrument response, X.

As another example, in forestry, the volume of a tree is sometimes estimated from
its diameter, which is easily measured. For a whole forest, it is reasonable to model
diameter (X) and volume (Y) as random variables with some joint distribution, and
then attempt to predict Y from X.

Let us first consider a relatively trivial situation: the problem of predicting ¥ by
means of a constant value, c. If we wish to choose the “best” value of ¢, we need some
measure of the effectiveness of a prediction. One that is amenable to mathematical
analysis and that is widely used is the mean squared error:

MSE = E[(Y — ¢)?]

This is the average squared error of prediction, the averaging being done with respect
to the distribution of Y. The problem then becomes finding the value of ¢ that min-
imizes the mean squared error. To solve this problem, we denote E(Y) by u and
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observe that (see Theorem A of Section 4.2.1)

E[(Y —¢)*] = Var(Y —¢) +[E(Y — o)
= Var(Y) + (u — )
The first term of the last expression does not depend on ¢, and the second term is
minimized for ¢ = p, which is the optimal choice of c.
Now let us consider predicting Y by some function 2(X) in order to minimize

MSE = E{[Y — h(X)]*}. From Theorem A of Section 4.4.1, the right-hand side can
be expressed as

E{[Y — h(X)1*} = E(E{[Y — h(X)*|X})

The outer expectation is with respect to X. For every x, the inner expectation is
minimized by setting /& (x) equal to the constant E (Y |X = x), from the result of the
preceding paragraph. We thus have that the minimizing function 4 (X) is

h(X) = E(Y|X)

For the bivariate normal distribution, we found that
Oy
EY|X) =puy +p— (X — ux)
Ox

This linear function of X is thus the minimum mean squared error predictor of Y
from X. [ |

A practical limitation of the optimal prediction scheme is that its implementation
depends on knowing the joint distribution of ¥ and X in order to find E(Y|X), and
often this information is not available, not even approximately. For this reason, we
can try to attain the more modest goal of finding the optimal /inear predictor of Y. (In
Example A, it turned out that the best predictor was linear, but this is not generally
the case.) That is, rather than finding the best function # among all functions, we try
to find the best function of the form A (x) = o + Bx. This merely requires optimizing
over the two parameters « and . Now

E[(Y —a—BX)*]=Var(Y —a — BX) + [E(Y —a — BX)]?
= Var(Y — BX) + [E(Y —a — BX)]’
The first term of the last expression does not depend on «, so « can be chosen so as
to minimize the second term. To do this, note that

EY —a—pX)=py —a—pPux
and that the right-hand side is zero, and hence its square is minimized, if
o =py — Bux
As for the first term,

Var(Y — BX) = of + B*03 — 2Boxy
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where oxy = Cov(X, Y). This is a quadratic function of g8, and the minimum is
found by setting the derivative with respect to 8 equal to zero, which yields
Oxy Oy
ﬂ = —2 = p—
Ox Oy
p is the correlation coefficient. Substituting in these values of o and g, we find that
the minimum mean squared error predictor, which we denote by Y, is

Y =a+BX
(o}

= iy + —3 (X — px)
Ox

The mean squared prediction error is then

0'2 Oxy
2 Xy 2
Var(Y — ﬂX) = Oy + —40X — 2—2ny
Oy Ox
2
_ 2  Oxy
=0y T 3%
Ox
_ 2 2 2
=0y — p Oy
2 2
=0}l —p?)

Note that the optimal linear predictor depends on the joint distribution of X
and Y only through their means, variances, and covariance. Thus, in practice, it is
generally easier to construct the optimal linear predictor or an approximation to it
than to construct the general optimal predictor E(Y|X). Second, note that the form
of the optimal linear predictor is the same as that of £ (Y |X) for the bivariate normal
distribution. Third, note that the mean squared prediction error depends only on oy
and p and that it is small if p is close to +1 or —1. Here we see again, from a different
point of view, that the correlation coefficient is a measure of the strength of the linear
relationship between X and Y.

EXAMPLE B Suppose that two examinations are given in a course. As a probability model, we
regard the scores of a student on the first and second examinations as jointly distributed
random variables X and Y. Suppose for simplicity that the exams are scaled to have
the same means © = uy = Wy and standard deviations ¢ = oy = oy. Then,
the correlation between X and Y is p = oxy/o? and the best linear predictor is
Y =pu+p(X —p),so

Y —pn=pX-p

Notice that by this equation we predict the student’s score on the second examination
to differ from the overall mean w by less than did the score on the first examination.
If the correlation p is positive, this is encouraging for a student who scores below the
mean on the first exam, since our best prediction is that his score on the next exam
will be closer to the mean. On the other hand, it’s bad news for the student who scored
above the mean on the first exam, since our best prediction is that she will score closer
to the mean on the next exam. This phenomenon is often referred to as regression to
the mean. [ ]
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The Moment-Generating Function

This section develops and applies some of the properties of the moment-generating
function. It turns out, despite its unlikely appearance, to be a very useful tool that can
dramatically simplify certain calculations.

The moment-generating function (mgf) of a random variable X is M (1) =
E (e'®) if the expectation is defined. In the discrete case,

M(t) =Y e p(x)
X
and in the continuous case,

oo
M) = / e f(x)dx
—0o0

The expectation, and hence the moment-generating function, may or may not exist
for any particular value of 7. In the continuous case, the existence of the expectation
depends on how rapidly the tails of the density decrease; for example, because the
tails of the Cauchy density die down at the rate x 2, the expectation does not exist
for any ¢ and the moment-generating function is undefined. The tails of the normal
density die down at the rate e, so the integral converges for all 7.

PROPERTY A

If the moment-generating function exists for 7 in an open interval containing
zero, it uniquely determines the probability distribution. ]

We cannot prove this important property here—its proof depends on properties
of the Laplace transform. Note that Property A says that if two random variables have
the same mgf in an open interval containing zero, they have the same distribution.
For some problems, we can find the mgf and then deduce the unique probability
distribution corresponding to it.

The rth moment of a random variable is E(X") if the expectation exists. We
have already encountered the first and second moments earlier in this chapter, that is,
E(X) and E (X?). Central moments rather than ordinary moments are often used: The
rth central moment is E{[X — E(X)]"}. The variance is the second central moment
and is a measure of dispersion about the mean. The third central moment, called the
skewness, is used as a measure of the asymmetry of a density or a frequency function
about its mean; if a density is symmetric about its mean, the skewness is zero (see
Problem 78 at the end of this chapter). As its name implies, the moment-generating
function has something to do with moments. To see this, consider the continuous
case:

M(t) = /OO er f(x)dx

o]
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EXAMPLE A

The derivative of M (t) is
d oo
M (t) = — " d
(1) dt[me f(x)dx

It can be shown that differentiation and integration can be interchanged, so that

M @) = / xe™ f(x)dx
and

M'(0) = / xf(x)dx = E(X)

Differentiating r times, we find
MP0) = E(X")

It can further be argued that if the moment-generating function exists in an interval
containing zero, then so do all the moments. We thus have the following property.

PROPERTY B

If the moment-generating function exists in an open interval containing zero,
then M (0) = E(X"). |

To find the moments of a random variable from the definition of expectation, we
must sum a series or carry out an integration. The utility of Property B is that, if the
mgf can be found, the process of integration or summation, which may be difficult, can
be replaced by the process of differentiation, which is mechanical. We now illustrate
these concepts using some familiar distributions.

Poisson Distribution
By definition,

The sum converges for all ¢. Differentiating, we have

M'(1) = re' =D
M//(t) — Aetek((e’—l) + )\.2€2tek(e’—l)
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Evaluating these derivatives at t = 0, we find

E(X) =X
EX?) =2+ A

from which it follows that
Var(X) = E(X*) — [E(X)]* = A

We have found that the mean and the variance of a Poisson distribution are
equal. [ ]

EXAMPLE B Gamma Distribution
The mgf of a gamma distribution is

=S} p
/ elx x“ilef” dx
0 ()

A'O[ o0

— xa—lex(t—k) dx
(@) Jo

M(z)

The latter integral converges for 1 < A and can be evaluated by relating it to the
gamma density having parameters « and A — 7. We thus obtain

L T@ [ A\
MO =1 ((x—t)a) = (A—t)

Differentiating, we find

M(0) = E(X) = %

a(a+1)

M"(0) = E(X?) = v

From these equations, we find that

Var(X) = E(X?) — [E(X)T?

al@+1) o
— T a2 TR
o
ZTZ [ |

EXAMPLE C Standard Normal Distribution
For the standard normal distribution, we have

1 o0
M(l) — E/ etxefxz/Z dx
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The integral converges for all # and can be evaluated using the technique of completing
the square. Since

%2 , , 2
— —tx = —(x* = 2x+1%) - =
2 X (x X +t°) 5

2

= — —t 2__

TS

therefore,
et2/2 o0

2
e W2 gy

MO=

Making the change of variables u = x — ¢ and using the fact that the standard normal
density integrates to 1, we find that

M(t) = " /?

From this result, we easily see that £(X) = 0 and Var(X) = 1. [ ]

Let us continue with the development of the properties of the moment-generating
function.

PROPERTY C
If X has the mgf Mx (t) and Y = a+bX, then Y has the mgf My () = e Mx (bt).

Proof
My (1) = E(e")
— E(eat+th)
— E(ealeth)
— eatE(ebIX)

= e‘”MX(bt) |

EXAMPLE D General Normal Distribution

If Y follows a general normal distribution with parameters 1 and o, the distribution
of Y is the same as that of ;& + o X, where X follows a standard normal distribution.
Thus, from Example C and Property C,

My (t) = e My (ct) = e e” /2 u
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PROPERTY D

If X and Y are independent random variables with mgf’s My and My and Z =
X + Y, then M;(t) = Mx(t)My(t) on the common interval where both mgf’s
exist.

Proof

Mz(t) = E(e'?)
— E(etX+tY)
— E(etXetY)
From the assumption of independence,
My(t) = E(e™)E(e'™)
= My (1)My (1) s

By induction, Property D can be extended to sums of several independent random
variables. This is one of the most useful properties of the moment-generating function.
The next three examples show how it can be used to easily derive results that would
take a lot more work to achieve without recourse to the mgf.

The sum of independent Poisson random variables is a Poisson random variable: If
X is Poisson with parameter A and Y is Poisson with parameter w, then X + Y is
Poisson with parameter A + p, since

ot ot L
=D (e =) _ O —1) n

If X follows a gamma distribution with parameters «; and A and Y follows a gamma
distribution with parameters o, and A, the mgf of X + Y is

A o] A o A ot
(A—t) <A—t> :<A—t)

where t < A. The right-hand expression is the mgf of a gamma distribution with
parameters A and o)+, . It follows from this that the sum of n independent exponential
random variables with parameter A follows a gamma distribution with parameters n
and A. Thus, the time between n consecutive events of a Poisson process in time follows
a gamma distribution. Assuming that the service times in a queue are independent
exponential random variables, the length of time to serve n customers follows a
gamma distribution. [ |
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EXAMPLE G

EXAMPLE H

If X ~ N(u, 02) and, independent of X, Y ~ N (v, t?), then the mgf of X + Y is

2 2 2.2 2052172
el et /Zevret /2 _ e(/H—v)zet (0%+1%)/2

which is the mgf of a normal distribution with mean  + v and variance o> + t2. The
sum of independent normal random variables is thus normal. ]

The preceding three examples are atypical. In general, if two independent ran-
dom variables follow some type of distribution, it is not necessarily true that their
sum follows the same type of distribution. For example, the sum of two gamma ran-
dom variables having different values for the parameter A does not follow a gamma
distribution, as can be easily seen from the mgf.

We now apply moment-generating functions to random sums of the type intro-
duced in Section 4.4.1. Suppose that

S:Z X;

i=1

where the X; are independent and have the same mgf, My, and where N has the mgf
My and is independent of the X;. By conditioning, we have

M;s(t) = E[E(e'°|N)]
Given N = n, Mg(t) = [Mx(t)]" from Property D. We thus have

Mg (1) = E[Mx(t)"]
— E(eNlong(t))

= My[log Mx(t)]

(We must carefully note the values of ¢ for which this is defined.)

Compound Poisson Distribution

This example presents a model that occurs for certain chain reactions, or “cascade”
processes. When a single primary electron, having been accelerated in an electrical
field, hits a plate, several secondary electrons are produced. In a multistage multiplying
tube, each of these secondary electrons hits another plate and thereby produces a
number of tertiary electrons. The process can continue through several stages in this
manner. Woodward (1948) considered models of this type in which the number of
electrons produced by the impact of a single electron on the plate is random and, in
particular, in which the number of secondary electrons follows a Poisson distribution.
The number of electrons produced at the third stage is described by a random sum
of the type just described, where N is the number of secondary electrons and X; is
the number of electrons produced by the ith secondary electron. Suppose that the X;
are independent Poisson random variables with parameter A and that N is a Poisson
random variable with parameter p. According to the preceding result, the mgf of S,
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the total number of particles, is

My (1) = exp[p(e™“ =" — 1)] m

Example H illustrates the utility of the mgf. It would have been more difficult
to find the probability mass function of the number of particles at the third stage. By
differentiating the mgf, we can find the moments of the probability mass function
(see Problem 98 at the end of this chapter).

If X and Y have a joint distribution, their joint moment-generating function is
defined as

Mxy (s, t) = E(e*7)

which is a function of two variables, s and ¢. If the joint mgf is defined on an open
set containing the origin, it uniquely determines the joint distribution. The mgf of the
marginal distribution of X alone is

Mx(s) = Mxy(s, 0)

and similarly for Y. It can be shown that X and Y are independent if and only if
their joint mgf factors into the product of the mgf’s of the marginal distributions.
E(XY) and other higher-order joint moments can be obtained from the joint mgf
by differentiation. Analogous properties hold for the joint mgf of several random
variables.

The major limitation of the mgf is that it may not exist. The characteristic
function of a random variable X is defined to be

P(1) = E("Y)

where i = +/—1. In the continuous case,

o0
sy = [ e rdx
—00

This integral converges for all values of ¢, since |¢/”*| < 1. The characteristic func-
tion is thus defined for all distributions. Its properties are similar to those of the
mgf: Moments can be obtained by differentiation, the characteristic function changes
simply under linear transformations, and the characteristic function of a sum of inde-
pendent random variables is the product of their characteristic functions. But using
the characteristic function requires some familiarity with the techniques of complex
variables.

Approximate Methods

In many applications, only the first two moments of a random variable, and not
the entire probability distribution, are known, and even these may be known only
approximately. We will see in Chapter 5 that repeated independent observations of a
random variable allow reliable estimates to be made of its mean and variance. Suppose
that we know the expectation and the variance of a random variable X but not the
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EXAMPLE A

entire distribution, and that we are interested in the mean and variance of ¥ = g(X)
for some fixed function g. For example, we might be able to measure X and determine
its mean and variance, but really be interested in Y, which is related to X in a known
way. We might want to know Var(Y), at least approximately, in order to assess the
accuracy of the indirect measurement process. From the results given in this chapter,
we cannot in general find E(Y) = py and Var(Y) = o} from E(X) = ux and
Var(X) = 0,2(, unless the function g is linear. However, if g is nearly linear in a range
in which X has high probability, it can be approximated by a linear function and
approximate moments of ¥ can be found.

In proceeding as just described, we follow a tack often taken in applied math-
ematics: When confronted with a nonlinear problem that we cannot solve, we lin-
earize. In probability and statistics, this method is called propagation of error, or the
5 method. Linearization is carried out through a Taylor series expansion of g about
1. To the first order,

Y =g(X)~ g(ux) + (X — ux)g'(nx)

We have expressed Y as approximately equal to a linear function of X. Recalling that
ifU=a+bV,then E(U) =a +bE(V) and Var(U) = b*Var(V), we find

ny ~ g(ux)

oy ~ oxlg (ux)?

We know that in general E(Y) # g(E (X)), as given by the approximation. In fact,
we can carry out the Taylor series expansion to the second order to get an improved
approximation of py:

Y = g(X) ~ g(uy) + (X — ux)g'(x) + 5(X — ux)?g" (1x)

Taking the expectation of the right-hand side, we have, since E(X — uyx) =0,
E(Y) ~ g(ux) + 3038 (11x)

How good such approximations are depends on how nonlinear g is in a neighbor-
hood of wx and on the size of ox. From Chebyshev’s inequality, we know that X is
unlikely to be many standard deviations away from py; if g can be reasonably well
approximated in this range by a linear function, the approximations for the moments
will be reasonable as well.

The relation of voltage, current, and resistance is V = I R. Suppose that the voltage
is held constant at a value V| across a medium whose resistance fluctuates randomly
as a result, say, of random fluctuations at the molecular level. The current therefore
also varies randomly. Suppose that it can be determined experimentally to have mean
ur # 0 and variance 0,2. We wish to find the mean and variance of the resistance, R,
and since we do not know the distribution of 7, we must resort to an approximation.
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We have
R=g(l)= Yo
, Vo 2V,
g =——=8 ) =—5
1237 1593
Thus,
\% \%
HR ~ - + —(3)012
i M1y
VZ
ox ~ 2o}

1
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We see that the variability of R depends on both the mean level of / and the variance
of /. This makes sense, since if / is quite small, small variations in / will result in
large variations in R = V;/I, whereas if [ is large, small variations will not affect R
as much. The second-order correction factor for i x also depends on 1, and is large if
wy is small. In fact, when 1 is near zero, the function g(7) = V,)/I is quite nonlinear,

and the linearization is not a good approximation.

This example examines the accuracy of the approximations using a simple test case.
We choose the function g(x) = 4/x and consider two cases: X uniform on [0, 1],
and X uniform on [1, 2]. The graph of g(x) in Figure 4.9 shows that g is more nearly
linear in the latter case, so we would expect the approximations to work better there.

Let Y = +/X; because X is uniform on [0, 1],

1
E(Y)=/ Vxdx =2
0

1.4

g(x)
o0

0 S 1.0 1.5 2.0
X

(=]

FIGURE 4.9 The function g(x) = 4/x is more nearly linear over the interval [T, 2]

than over the interval [0, 1].
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and

1
E(Y? =/ xdx =3
0

so Var(Y) = % — (%)2 = % and oy = .236. These results are exact.

Using the approximation method, we first calculate

g = tx1
g//(x) — _‘_l‘x—?)/z
Since X is uniform on [0, 1], uxy = % and evaluating the derivatives at this value
gives us
V2
g (nx) = —
2
) V2
g (ux) = —7

We know that Var(X) = % for a random variable uniform on [0, 1], so the approxi-

mations are
1 1 2
E(Y)%\/7— V2 ) s
2 2\12x2

Var(Y) ~ % X 1]—2 =.042

oy ~ .204

The approximation to the mean is .678, and compared to the actual value of .667, it is
off by about 1.6%. The approximation to the standard deviation is .204, and compared
to the actual value of .236, it is off by 13%.

Now let us consider the case in which X is uniform on [1, 2]. Proceeding as
before, we find that y = /x has mean 1.219. The variance and standard deviation are
.0142 and .119, respectively. To compare these to the approximations, we note that
px = 3 and Var(X) = 75 (the random variable uniform on [1, 2] can be obtained by
adding the constant 1 to arandom variable uniform on [0, 1]; compare with Theorem A
in Section 4.2). We find

g'(nx) = 408
g (ux) = —.136

so the approximations are

E(Y) ~ \/g— % (%) =1.219

.408?

Var(Y) ~ =.0138

oy ~ .118

These values are much closer to the actual values than are the approximations for the
first case. [ |
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Suppose that we have Z = g(X, Y), a function of two variables. We can again
carry out Taylor series expansions to approximate the mean and variance of Z. To the
first order, letting u denote the point (ux, wy),

g(u) L —p ag(u)
dy

The notation dg(p)/0x means that the derivative is evaluated at the point n. Here Z
is expressed as approximately equal to a linear function of X and Y, and the mean
and variance of this linear function are easily calculated to be

E(Z) ~ g(u)

Z=g(X,Y)~ g(n) + (X — ux)

and

2
o (52 v (52 o (22) (5)

(For the latter calculation, see Corollary A in Section 4.3.) As is the case with a single
variable, a second-order expansion can be used to obtain an improved estimate of
E(Z):

g(u) L -y dg(p)
dy

Z=gX,Y)~g(u) + (X — ux)

g (w)
dy?

9 g(u)

+ = (X— wx)? + = (Y— wr)?

g (1)
dxdy

Taking expectations term by term on the right-hand side yields

1 ,0%w) 1 ,09%g(w) 3*g(w)
E(Z) ~ g(un) + UX 9x2 5 y 9y2 Oxy dxdy

The general case of a function of n variables can be worked out similarly; the basic
concepts are illustrated by the two-variable case.

+ (X —pux)(¥Y — puy)

Expectation and Variance of a Ratio
Let us consider the case where Z = Y /X, which arises frequently in practice. For
example, a chemist might measure the concentrations of two substances, both with
some measurement error that is indicated by their standard deviations, and then report
the relative concentrations in the form of a ratio. What is the approximate standard
deviation of the ratio, Z?

Using the method of propagation of error derived above, for g(x, y) = y/x, we
have

g -y ag 1

ax x2 ay  x

g 2y g

a2 X ay?
dg .

axdy x2
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Evaluating these derivatives at (uy, py) and using the preceding result, we find, if
Mx # 0»

My My Oxy
E@)~ T i =
Mx Hx Hx
My 1 Y
= — 4+ 3 <O')2(——,OO'Xo'y)
Mx X Mx

From this equation, we see that the difference between E(Z) and uy/ux depends on
several factors. If oy and oy are small—that is, if the two concentrations are measured
quite accurately—the difference is small. If iy is small, the difference is relatively
large. Finally, correlation between X and Y affects the difference.

We now consider the variance. Again using the preceding result and evaluating
the partial derivatives at (iy, (y), we find

2 2
Hy Oy My
Var(Z) ~ o3~ + X _20yy
uk o ouk 1y
1 2 My 2 Ky
= — |oy— +0y —2poxoy—
1y ( Yux T 1x

From this equation, we see that the ratio is quite variable when .y is small, paralleling
the results in Example A, and that correlation between X and Y, if of the same sign
as iy /ux, decreases Var(Z). [ |

4.7 Problems

1. Show that if a random variable is bounded—that is, | X| < M < oo—then
E (X) exists.

2. If X is a discrete uniform random variable—that is, P(X = k) = 1/n fork =
1,2,...,n—find E(X) and Var(X).

3. Find E(X) and Var(X) for Problem 3 in Chapter 2.

4. Let X havethecdf F(x) =1 —x7%, x > 1.

a. Find E(X) for those values of o for which E(X) exists.
b. Find Var(X) for those values of « for which it exists.

5. Let X have the density

14+ ax
>

-1 <x<l, —1l<a<l

fx) =

Find E(X) and Var(X).
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Let X be a continuous random variable with probability density function

fx)=2x,0<x <1.

a. Find E(X).

b. Let Y = X2. Find the probability mass function of ¥ and use it to find E(Y).

c. Use Theorem A in Section 4.1.1 to find E(X?) and compare to your answer
in part (b).

d. Find Var(X) according to the definition of variance given in Section 4.2.
Also find Var(X) by using Theorem B of Section 4.2.

. Let X be adiscrete random variable that takes on values 0, 1, 2 with probabilities

1. 3. g respectively.

Find E(X).

Let Y = X?. Find the probability mass function of ¥ and use it to find E(Y).
Use Theorem A of Section 4.1.1 to find E(X?) and compare to your answer
in part (b).

Find Var(X) according to the definition of variance given in Section 4.2.
Also find Var(X) by using Theorem B in Section 4.2.

cFe

&

. Show that if X is a discrete random variable, taking values on the positive

integers, then E(X) = >_;, P(X > k). Apply this result to find the expected
value of a geometric random variable.

. This is a simplified inventory problem. Suppose that it costs ¢ dollars to stock an

item and that the item sells for s dollars. Suppose that the number of items that
will be asked for by customers is a random variable with the frequency function
p(k). Find a rule for the number of items that should be stocked in order to
maximize the expected income. (Hint: Consider the difference of successive
terms.)

A list of n items is arranged in random order; to find a requested item, they
are searched sequentially until the desired item is found. What is the expected
number of items that must be searched through, assuming that each item is
equally likely to be the one requested? (Questions of this nature arise in the
design of computer algorithms.)

Referring to Problem 10, suppose that the items are not equally likely to be
requested but have known probabilities py, pa, ..., p,.Suggestan alternative
searching procedure that will decrease the average number of items that must
be searched through, and show that in fact it does so.

If X is a continuous random variable with a density that is symmetric about
some point, &, show that E(X) = &, provided that E(X) exists.

If X is a nonnegative continuous random variable, show that

E(X) = /00[1 — F(x)]dx
0

Apply this result to find the mean of the exponential distribution.
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14.

15.

16.

17.

18.

19.
20.

21.

22,

23.

24.
25.

26.

27.

28.

29.
30.

Let X be a continuous random variable with the density function
fx) = 2x, 0<x<1

a. Find E(X).

b. Find E(X?) and Var(X).

Suppose that two lotteries each have n possible numbers and the same payoff.
In terms of expected gain, is it better to buy two tickets from one of the lotteries
or one from each?

Suppose that E(X) = p and Var(X) = o2. Let Z = (X — )/o. Show that
E(Z) =0and Var(Z2) = 1.

Find (a) the expectation and (b) the variance of the kth-order statistic of a sample
of n independent random variables uniform on [0, 1]. The density function is
given in Example C in Section 3.7.

IfU,, ..., U, are independent uniform random variables, find E(U,) — Uy)).
Find E(Uyy — Ug-1y), where the U(;y are as in Problem 18.

A stick of unit length is broken into two pieces. Find the expected ratio of the
length of the longer piece to the length of the shorter piece.

A random square has a side length that is a uniform [0, 1] random variable.
Find the expected area of the square.

A random rectangle has sides the lengths of which are independent uniform
random variables. Find the expected area of the rectangle, and compare this
result to that of Problem 21.

Repeat Problems 21 and 22 assuming that the distribution of the lengths is
exponential.

Prove Theorem A of Section 4.1.2 for the discrete case.

If X, and X, are independent random variables following a gamma distribution
with parameters « and A, find E(R?), where R? = X? + X3.

Referring to Example B in Section 4.1.2, what is the expected number of
coupons needed to collect r different types, where r < n?

If n men throw their hats into a pile and each man takes a hat at random, what
is the expected number of matches? (Hint: Express the number as a sum.)

Suppose that n enemy aircraft are shot at simultaneously by m gunners, that
each gunner selects an aircraft to shoot at independently of the other gunners,
and that each gunner hits the selected aircraft with probability p. Find the
expected number of aircraft hit by the gunners.

Prove Corollary A of Section 4.1.1.
Find E[1/(X 4+ 1)], where X is a Poisson random variable.
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Let X be uniformly distributed on the interval [1,2]. Find E(1/X). IsE(1/X) =
1/E(X)?

Let X have a gamma distribution with parameters o and A. For those values of
a and A for which it is defined, find E(1/X).

Prove Chebyshev’s inequality in the discrete case.

Let X be uniform on [0, 1], and let ¥ = +/X. Find E(Y) by (a) finding the
density of Y and then finding the expectation and (b) using Theorem A of
Section 4.1.1.

Find the mean of a negative binomial random variable. (Hint: Express the
random variable as a sum.)

Consider the following scheme for group testing. The original lot of samples is
divided into two groups, and each of the subgroups is tested as a whole. If either
subgroup tests positive, it is divided in two, and the procedure is repeated. If
any of the groups thus obtained tests positive, test every member of that group.
Find the expected number of tests performed, and compare it to the number
performed with no grouping and with the scheme described in Example C in
Section 4.1.2.

For what values of p is the group testing of Example C in Section 4.1.2 inferior
to testing every individual?

This problem continues Example A of Section 4.1.2.

a. What is the probability that a fragment is the leftmost member of a
contig?

b. What is the expected number of fragments that are leftmost members of
contigs?

¢. What is the expected number of contigs?

Suppose that a segment of DNA of length 1,000,000 is to be shotgun sequenced
with fragments of length 1000.

a. How many fragment would be needed so that the chance of an individual
site being covered is greater than 0.99?
b. With this choice, how many sites would you expect to be missed?

A child types the letters Q, W, E, R, T, Y, randomly producing 1000 letters in
all. What is the expected number of times that the sequence QQQQ appears,
counting overlaps?

Continuing with the previous problem, how many times would we expect the
word “TRY” to appear? Would we be surprised if it occurred 100 times? (Hint:
Consider Markov’s inequality.)

Let X be an exponential random variable with standard deviation o. Find
P(|X — E(X)| > ko) for k = 2, 3, 4, and compare the results to the bounds
from Chebyshev’s inequality.

Show that Var(X — Y) = Var(X) + Var(Y) — 2Cov(X, Y).
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44

45.

46.
47.

48.

49.

50.

51.

52.

53.

If X and Y are independent random variables with equal variances, find
Cov(X+Y, X-Y).

Find the covariance and the correlation of N; and N;, where Ny, N,, ..., N,
are multinomial random variables. (Hint: Express them as sums.)

IfU=a+bXand V = c +dY, show that |pyv| = |pxy|.

If X and Y are independent random variables and Z = Y — X, find expressions
for the covariance and the correlation of X and Z in terms of the variances of
XandY.

Let U and V be independent random variables with means u and variances o2,

Let Z = aU + V+/1 —a?. Find E(Z) and py 5.

Two independent measurements, X and Y, are taken of a quantity u. E(X) =
E(Y) = u, but oy and oy are unequal. The two measurements are combined
by means of a weighted average to give

Z=aX+(1—-a)Y

where o is ascalarand 0 < o < 1.

a. Show that E(Z) = pu.

b. Find « in terms of oy and oy to minimize Var(Z).

¢. Under what circumstances is it better to use the average (X + Y)/2 than
either X or Y alone?

Suppose that X;, wherei = 1, ..., n, are independent random variables with
E(X;) = pand Var(X;) = o> Let X =n~" 3!, X,. Show that E(X) =
and Var(X) = o2/n.

Continuing Example E in Section 4.3, suppose there are n securities, each with
the same expected return, that all the returns have the same standard deviations,
and that the returns are uncorrelated. What is the optimal portfolio vector? Plot
the risk of the optimal portfolio versus n. How does this risk compare to that
incurred by putting all your money in one security?

Consider two securities, the first having ;«; = 1 and o; = 0.1, and the second
having u, = 0.8 and 0, = 0.12. Suppose that they are negatively correlated,
with p = —0.8.

a. If you could only invest in one security, which one would you choose, and
why?

b. Suppose you invest 50% of your money in each of the two. What is your
expected return and what is your risk?

c¢. If you invest 80% of your money in security 1 and 20% in security 2, what
is your expected return and your risk?

d. Denote the expected return and its standard deviation as functions of 7 by
w() and o (7). The pair (u (), o (;r)) trace out a curve in the plane as &
varies from O to 1. Plot this curve.

e. Repeat b—d if the correlation is p = 0.1.

Show that Cov(X, Y) < /Var(X)Var(Y).
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Let X, Y, and Z be uncorrelated random variables with variances 02, o2, and
o2, respectively. Let

U=7Z+X

V=2+Y

Find Cov(U, V) and pyy.

Let T = > ;_, kX, where the X, are independent random variables with
means p and variances 2. Find E(T) and Var(T).

LetS = ZZ:] X, where the X, are as in Problem 55. Find the covariance and
the correlation of S and T'.

If X and Y are independent random variables, find Var(XY) in terms of the
means and variances of X and Y.

A function is measured at two points with some error (for example, the position
of an object is measured at two times). Let

Xi=f ) +e&
Xo=f(x+h)+e

where ¢ and &, are independent random variables with mean zero and variance
o2. Since the derivative of f is

. S+ h)— fx)
m-————
h—0 h

it is estimated by
X, — X
7 - A2 1
h

a. Find E(Z) and Var(Z). What is the effect of choosing a value of /4 that is
very small, as is suggested by the definition of the derivative?

b. Find an approximation to the mean squared error of Z as an estimate of f'(x)

using a Taylor series expansion. Can you find the value of / that minimizes
the mean squared error?

¢. Suppose that f is measured at three points with some error. How could you
construct an estimate of the second derivative of f, and what are the mean
and the variance of your estimate?

Let (X, Y) be a random point uniformly distributed on a unit disk. Show that
Cov(X, Y) =0, but that X and Y are not independent.

Let Y have a density thatis symmetric about zero, andlet X = SY, where S'is an
independent random variable taking on the values +1 and —1 with probability
% each. Show that Cov(X, Y) = 0, but that X and Y are not independent.

In Section 3.7, the joint density of the minimum and maximum of # independent
uniform random variables was found. In the case n = 2, this amounts to X
and Y, the minimum and maximum, respectively, of two independent random
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62.

63.

64.

65.

66.

67.

68.
69.

variables uniform on [0, 1], having the joint density
flx, y) =2, O<x=<y

a. Find the covariance and the correlation of X and Y. Does the sign of the
correlation make sense intuitively?

b. Find E(X|Y = y)and E(Y|X = x).Dothese results make sense intuitively?

c¢. Find the probability density functions of the random variables E(X|Y) and
E(Y|X).

d. What is the linear predictor of ¥ in terms of X (denoted by ¥ = a + bX)
that has minimal mean squared error? What is the mean square prediction
error?

e. What is the predictor of ¥ in terms of X [¥ = h(X)] that has minimal mean
squared error? What is the mean square prediction error?

Let X and Y have the joint distribution given in Problem 1 of Chapter 3.

a. Find the covariance and correlation of X and Y.
b. Find E(Y|X = x) for x = 1, 2, 3, 4. Find the probability mass function of
the random variable E(Y|X).

Let X and Y have the joint distribution given in Problem 8 of Chapter 3.

a. Find the covariance and correlation of X and Y.
b. Find E(Y|X =x) for0 <x < 1.

Let X and Y be jointly distributed random variables with correlation pyy; define
the standardized random variables X and ¥ as X = (X — E(X)) /+/ Var(X)
and Y = (Y — E(Y))/+/Var(Y). Show that Cov(X, ¥) = pyy.

How has the assumption that N and the X; are independent been used in
Example D of Section 4.4.1?

A building contains two elevators, one fast and one slow. The average waiting
time for the slow elevator is 3 min. and the average waiting time of the fast
elevator is 1 min. If a passenger chooses the fast elevator with probability % and
the slow elevator with probability %, what is the expected waiting time? (Use
the law of total expectation, Theorem A of Section 4.4.1, defining appropriate
random variables X and Y.)

A random rectangle is formed in the following way: The base, X, is chosen
to be a uniform [0, 1] random variable and after having generated the base,
the height is chosen to be uniform on [0, X]. Use the law of total expectation,
Theorem A of Section 4.4.1, to find the expected circumference and area of the
rectangle.

Show that E[Var(Y|X)] < Var(Y).

Suppose that a bivariate normal distribution has uy = uy = 0 and oy =
oy = 1. Sketch the contours of the density and the lines E(Y|X = x) and
EX|Y =y)forp =0, .5 and .9.
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If X and Y are independent, show that E(X|Y = y) = E(X).

Let X be a binomial random variable representing the number of successes in
n independent Bernoulli trials. Let ¥ be the number of successes in the first m
trials, where m < n. Find the conditional frequency function of ¥ given X = x
and the conditional mean.

Anitem is present in a list of n items with probability p; if it is present, its posi-
tion in the list is uniformly distributed. A computer program searches through
the list sequentially. Find the expected number of items searched through before
the program terminates.

A fair coin is tossed n times, and the number of heads, N, is counted. The coin
is then tossed N more times. Find the expected total number of heads generated
by this process.

The number of offspring of an organism is a discrete random variable with
mean p and variance o2, Each of its offspring reproduces in the same man-
ner. Find the expected number of offspring in the third generation and its
variance.

Let T be an exponential random variable, and conditional on 7', let U be uniform
on [0, T']. Find the unconditional mean and variance of U.

Let the point (X, Y) be uniformly distributed over the half disk x* + y* < 1,
where y > 0. If you observe X, what is the best prediction for Y ? If you observe
Y, what is the best prediction for X ? For both questions, “best” means having
the minimum mean squared error.

Let X and Y have the joint density
flx, y)=e, 0<x<y

a. Find Cov(X, Y) and the correlation of X and Y.
b. Find E(X|Y = y) and E(Y|X = x).
c¢. Find the density functions of the random variables E(X|Y) and E(Y|X).

Show that if a density is symmetric about zero, its skewness is zero.

Let X be adiscrete random variable that takes on values 0, 1, 2 with probabilities
1. 3. 3 respectively. Find the moment-generating function of X, M (t), and

verify that E(X) = M’(0) and that E(X?) = M"(0).

Let X be a continuous random variable with density function f(x) = 2x,
0 < x < 1. Find the moment-generating function of X, M(¢), and verify that
E(X) = M’'(0) and that E(X?) = M"(0).

Find the moment-generating function of a Bernoulli random variable, and use
it to find the mean, variance, and third moment.

Use the result of Problem 81 to find the mgf of a binomial random variable and
its mean and variance.
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83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

9.

Show that if X; follows a binomial distribution with n; trials and probability of
success p; = p,wherei = 1, ..., nandthe X; are independent, then Z?:l X;
follows a binomial distribution.

Referring to Problem 83, show that if the p; are unequal, the sum does not
follow a binomial distribution.

Find the mgf of a geometric random variable, and use it to find the mean and
the variance.

Use the result of Problem 85 to find the mgf of a negative binomial random
variable and its mean and variance.

Under what conditions is the sum of independent negative binomial random
variables also negative binomial?

Let X and Y be independent random variables, and let o and 8 be scalars. Find
an expression for the mgf of Z = ¢ X + BY in terms of the mgf’s of X and Y.
Let Xy, X5, ..., X, be independent normal random variables with means
w; and variances aiz. Show that ¥ = Zf’zl o; X;, where the «; are scalars,
is normally distributed, and find its mean and variance. (Hint: Use moment-
generating functions.)

Assuming that X ~ N (O, o?), use the mgf to show that the odd moments are
zero and the even moments are
2n)la?"
Mon = on (l’l')

Use the mgf to show that if X follows an exponential distribution, cX (¢ > 0)
does also.

Suppose that ® is a random variable that follows a gamma distribution with pa-
rameters A and o, where « is an integer, and suppose that, conditional on
®, X follows a Poisson distribution with parameter ®. Find the uncondi-
tional distribution of @ 4+ X. (Hint: Find the mgf by using iterated conditional
expectations.)

Find the distribution of a geometric sum of exponential random variables by
using moment-generating functions.

If X is a nonnegative integer-valued random variable, the probability-
generating function of X is defined to be

Gis)=Y_ s'p
k=0

where p, = P(X = k).
a. Show that

Pr = EWG(S)
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b. Show that

dG
—_— = FE(X
s (X)
s=1
@G — E[X(X — 1)]
ds? » -

c. Express the probability-generating function in terms of moment-generating
function.
d. Find the probability-generating function of the Poisson distribution.

Show that if X and Y are independent, their joint moment-generating function
factors.

Show how to find E(XY) from the joint moment-generating function of X
and Y.

Use moment-generating functions to show that if X and Y are independent,
then

Var(aX + bY) = a*Var(X) + b*Var(Y)

Find the mean and variance of the compound Poisson distribution (Example H
in Section 4.5).

Find expressions for the approximate mean and variance of ¥ = g(X) for (a)
g(x) = /x, (b) g(x) =logx, and (¢) g(x) = sin”! x.

If X is uniform on [10, 20], find the approximate and exact mean and variance
of Y = 1/X, and compare them.

Find the approximate mean and variance of ¥ = /X, where X is a random
variable following a Poisson distribution.

Two sides, x and yy, of a right triangle are independently measured as X and
Y, where E(X) = xo and E(Y) = y, and Var(X) = Var(Y) = 0. The angle
between the two sides is then determined as

Y
O = tan~' (—)
X

Find the approximate mean and variance of ®.

The volume of a bubble is estimated by measuring its diameter and using the
relationship

T3
v ="1D
6

Suppose that the true diameter is 2 mm and that the standard deviation of the
measurement of the diameter is .01 mm. What is the approximate standard
deviation of the estimated volume?

The position of an aircraft relative to an observer on the ground is estimated
by measuring its distance r from the observer and the angle 6 that the line of
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sight from the observer to the aircraft makes with the horizontal. Suppose that
the measurements, denoted by R and ®, are subject to random errors and are
independent of each other. The altitude of the aircraft is then estimated to be
Y = RsinG®.

a. Find an approximate expression for the variance of Y.

b. For given r, at what value of 6 is the estimated altitude most variable?



5.1

5.2

CHAPTER 5

Limit Theorems

Introduction

This chapter is principally concerned with the limiting behavior of the sum of inde-
pendent random variables as the number of summands becomes large. The results
presented here are both intrinsically interesting and useful in statistics, since many
commonly computed statistical quantities, such as averages, can be represented as
sums.

The Law of Large Numbers

It is commonly believed that if a fair coin is tossed many times and the proportion of
heads is calculated, that proportion will be close to % John Kerrich, a South African
mathematician, tested this belief empirically while detained as a prisoner during
World War II. He tossed a coin 10,000 times and observed 5067 heads. The law of
large numbers is a mathematical formulation of this belief. The successive tosses of
the coin are modeled as independent random trials. The random variable X; takes on
the value O or 1 according to whether the ith trial results in a tail or a head, and the
proportion of heads in n trials is

The law of large numbers states that X, approaches % in a sense that is specified by
the following theorem.

177
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THEOREM A Law of Large Numbers

Let X{,X,,...,X;...bea sequence of independent random variables with
E(X;) = pand Var(X;) = o®. Let X, =n~'>"]_, X;. Then, for any & > 0,

P(X,—pu|>¢e) —0 asn — 0o

Proof
We first find E (X ,,) and Var(X,,):

— 1 <
EXy) =~ EX)=p
i=1

Since the X; are independent,

— 1 ¢ o?
Var(X,) = — Z_; Var(X;) = —
The desired result now follows immediately from Chebyshev’s inequality, which
states that
Var(X,) o

P(X,—p|>e) < ——=— =0, asn — 0o [ ]
&2 ne?

In the case of a fair coin toss, the X; are Bernoulli random variables with p = 1/2,
E(X;) = 1/2 and Var(X;) = 1/4. If tossed 10,000 times

Var(X 19,000) = 2.5 x 107

and the standard deviation of the average is the square root of the variance, 0.005.
The proportion observed by Kerrich, 0.5067, is thus a little more than one standard
deviation away from its expected value of 0.5, consistent with Chebyshev’s inequality.
(Recall from Section 4.2 that Chebyshev’s inequality can be written in the form
P(IX, — ul > ko) < 1/k>)

If a sequence of random variables, {Z, }, is such that P(|Z,, —«| > ¢) approaches
zero as n approaches infinity, for any ¢ > 0 and where « is some scalar, then Z, is
said to converge in probability to «. There is another mode of convergence, called
strong convergence or almost sure convergence, which asserts more. Z, is said to
converge almost surely to « if for every ¢ > 0, |Z, — «| > ¢ only a finite number
of times with probability 1; that is, beyond some point in the sequence, the difference
is always less than ¢, but where that point is random. The version of the law of large
numbers stated and proved earlier asserts that X, converges to i in probability. This
version is usually called the weak law of large numbers. Under the same assumptions,
a strong law of large numbers, which asserts that X, converges almost surely to /i,
can also be proved, but we will not do so.

We now consider some examples that illustrate the utility of the law of large
numbers.
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Monte Carlo Integration
Suppose that we wish to calculate

1
1) = / F(x) dx
0

where the integration cannot be done by elementary means or evaluated using ta-
bles of integrals. The most common approach is to use a numerical method in which
the integral is approximated by a sum; various schemes and computer packages ex-
ist for doing this. Another method, called the Monte Carlo method, works in the
following way. Generate independent uniform random variables on [0, 1]—that is,
X, X, ..., X,—and compute

R 1 n
i) =- X;
== ; fX)
By the law of large numbers, this should be close to E[ f (X)], which is simply

1
ELF(X)] = / £ dx = 1(f)
0

This simple scheme can be easily modified in order to change the range of integration
and in other ways. Compared to the standard numerical methods, it is not especially
efficient in one dimension, but becomes increasingly efficient as the dimensionality
of the integral grows.

As a concrete example, let us consider the evaluation of

—x2/2 dx

1 !
I1(f) N /0 e
The integral is that of the standard normal density, which cannot be evaluated in closed
form. From the table of the normal distribution (Table 2 in Appendix B), an accurate
numerical approximation is / (f) = .3413. If 1000 points, X1, ..., X100, uniformly
distributed over the interval 0 < x < 1, are generated using a pseudorandom number
generator, the integral is then approximated by

1 1 1000
i N R -X2/2
)= 1000 («/Zn) ;e

which produced for one realization of the X; the value .3417. [ |

Repeated Measurements

Suppose that repeated independent unbiased measurements, X1, ..., X,, of aquantity
are made. If n is large, the law of large numbers says that X will be close to the true
value, u, of the quantity, but how close X is depends not only on n but on the variance
of the measurement error, o2, as can be seen in the proof of Theorem A.
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EXAMPLE C

Fortunately, o2 can be estimated and therefore
_ (72
Var(X) = —
n

can be estimated from the data to assess the precision of X. First, note thatn ™' >"_| X?
converges to E(X?), from the law of large numbers. Second, it can be shown that if
Z, converges to « in probability and g is a continuous function, then

8(Zy) — g(a)

which implies that
X' = [EQOP

Finally, since n™' >~/_, X? converges to E(X?) and X converges to [E(X)]?, with a
little additional argument it can be shown that

% S XX = E(XY) — [E(X)P = Var(X)

i=1

More generally, it follows from the law of large numbers that the sample moments,
n~' 3", X7, converge in probability to the moments of X, E(X"). ]

A muscle or nerve cell membrane contains a very large number of channels; when
open, these channels allow ions to pass through. Individual channels seem to open and
close randomly, and it is often assumed that in an equilibrium situation the channels
open and close independently of each other and that only a very small fraction are open
at any one time. Suppose then that the probability that a channel is open is p, a very
small number, that there are m channels in all, and that the amount of current flowing
through an individual channel is ¢. The number of channels open at any particular
time is N, a binomial random variable with m trials and probability p of success on
each trial. The total amount of current is S = ¢N and can be measured. We then
have

E(S) =cE(N) =cmp
Var(S) = ¢*mp(1 — p)

and
Var(S)
=c(l—-p)y=c
E(S)
since p is small. Thus, through independent measurements, S, ..., S,, we can esti-

mate E(S) and Var(S) and therefore ¢, the amount of current flowing through a single
channel, without knowing how many channels there are. ]
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Convergence in Distribution
and the Central Limit Theorem

In applications, we often want to find P(a < X < b) when we do not know the
cdf of X precisely; it is sometimes possible to do this by approximating Fy. The
approximation is often arrived at by some sort of limiting argument. The most famous
limit theorem in probability theory is the central limit theorem, which is the main
topic of this section. Before discussing the central limit theorem, we develop some
introductory terminology, theory, and examples.

DEFINITION
Let X, X,, ... be a sequence of random variables with camulative distribution
functions Fj, F5, ..., and let X be a random variable with distribution function

F. We say that X,, converges in distribution to X if
lim F,(x) = F(x)

at every point at which F is continuous. ]

Moment-generating functions are often useful for establishing the convergence
of distribution functions. We know from Property A of Section 4.5 that a distribu-
tion function F, is uniquely determined by its mgf, M,. The following theorem,
which we give without proof, states that this unique determination holds for limits
as well.

THEOREM A Continuity Theorem

Let F), be a sequence of cumulative distribution functions with the corresponding
moment-generating function M,,. Let F be acumulative distribution function with
the moment-generating function M. If M, (t) — M (¢) for all 7 in an open interval
containing zero, then F, (x) — F(x) at all continuity points of F. |

We will show that the Poisson distribution can be approximated by the normal distri-
bution for large values of 1. This is suggested by examining Figure 2.6, which shows
that as A increases, the probability mass function of the Poisson distribution becomes
more symmetric and bell-shaped.

Let A, X2, ... be an increasing sequence with A, — oo, and let {X,} be a
sequence of Poisson random variables with the corresponding parameters. We know
that £(X,) = Var(X,) = A,. If we wish to approximate the Poisson distribution
function by a normal distribution function, the normal must have the same mean and
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variance as the Poisson does. In addition, if we wish to prove a limiting result, we run
into the difficulty that the mean and variance are tending to infinity. This difficulty is
dealt with by standardizing the random variables—that is, by letting

Xn - E(Xn)
+/Var(X,)
X, — A,
VA
We then have E(Z,) = 0 and Var(Z,) = 1, and we will show that the mgf of Z,

converges to the mgf of the standard normal distribution.
The mgf of X, is

Z, =

My, (1) = &P

By Property C of Section 4.5, the mgf of Z,, is

t
My (1) = e V" My (
n n \/E

—t/Tn (e -1

=e
It will be easier to work with the log of this expression.
log Mz, (t) = —t+/Ay + Ay (e — 1)

. . . k
Using the power series expansion e* = )~ | 47, we see that

2
lim log My, (t) = 3

or
lim My, (t) = e /?

n—00

The last expression is the mgf of the standard normal distribution.

We have shown that a standardized Poisson random variable converges in distri-
bution to a standard normal variable as A approaches infinity. Practically, we wish to
use this limiting result as a basis for an approximation for large but finite values of A,,.
How adequate the approximation is for A = 100, say, is a matter for theoretical and/or
empirical investigation. It turns out that the approximation is increasingly good for
large values of A and that A does not have to be all that large. (See Problem 8 at the
end of this chapter.) [ |
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The next example shows how the approximation of the Poisson distribution can
be applied in a specific case.

A certain type of particle is emitted at a rate of 900 per hour. What is the probability
that more than 950 particles will be emitted in a given hour if the counts form a
Poisson process?

Let X be a Poisson random variable with mean 900. We find P(X > 950) by
standardizing:

X —900 950 — 900
P(X > 950) = P < )

/900 g /900
~1-0(3)

= .04779

where @ is the standard normal cdf. For comparison, the exact probability is
.04712. ]

We now turn to the central limit theorem, which is concerned with a limiting
property of sums of random variables. If X;, X5, ... is a sequence of independent
random variables with mean p and variance o2, and if

Sn = i Xl'
i=1

we know from the law of large numbers that S, /n converges to u in probability. This
followed from the fact that

S, 1 o?
Var | — | = —=Var(S,) = — — 0
n n

n2

The central limit theorem is concerned not with the fact that the ratio S, /n converges
to p but with how it fluctuates around w. To analyze these fluctuations, we stan-
dardize:

_S,,—nu

o/n

Zy

You should verify that Z, has mean 0 and variance 1. The central limit theorem states
that the distribution of Z, converges to the standard normal distribution.



184

Chapter 5

Limit Theorems

THEOREM B Central Limit Theorem

Let X;, X5, ... be a sequence of independent random variables having mean 0
and variance o> and the common distribution function F and moment-generating
function M defined in a neighborhood of zero. Let

Sn = i Xi
i=1

Then

Sll
1imP< §x)=<l)(x), —00 < X < 00

n—00 o

B

Proof

Let Z, = S,/(0+/n). We will show that the mgf of Z, tends to the mgf of the
standard normal distribution. Since S, is a sum of independent random variables,

Ms, (1) = [M(@®)]"

e

M (s) has a Taylor series expansion about zero:
M(s) = M(0) + sM'(0) + 15°M"(0) + &,

where g,/s> — 0 as s — 0. Since E(X) = 0, M’(0) = 0, and M"(0) = o2. As
n — 00, t/(o4/n) — 0, and

(i) o () o

where ¢, /(t?/(no?)) — 0 as n — oo. We thus have

and

i !
Mz, (1) = (1 + — +8n>
2n

It can be shown that if @, — a, then

. al’t Z
lim (1 + —) = e’

n—00 n

From this result, it follows that
My () > & asn— oo

where exp(t2/2) is the mgf of the standard normal distribution, as was to be
shown. |

Theorem B is one of the simplest versions of the central limit theorem; there are
many central limit theorems of various degrees of abstraction and generality. We have
proved Theorem B under the assumption that the moment-generating functions exist,
which is a rather strong assumption. By using characteristic functions instead, we
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could modify the proof so that it would only be necessary that first and second mo-
ments exist. Further generalizations weaken the assumption that the X; have the same
distribution and apply to linear combinations of independent random variables. Cen-
tral limit theorems have also been proved that weaken the independence assumption
and allow the X; to be dependent but not “too” dependent.

For practical purposes, especially for statistics, the limiting result in itself is not of
primary interest. Statisticians are more interested in its use as an approximation with
finite values of n. It is impossible to give a concise and definitive statement of how
good the approximation is, but some general guidelines are available, and examining
special cases can give insight. How fast the approximation becomes good depends
on the distribution of the summands, the X;. If the distribution is fairly symmetric
and has tails that die off rapidly, the approximation becomes good for relatively small
values of n. If the distribution is very skewed or if the tails die down very slowly, a
larger value of n is needed for a good approximation. The following examples deal
with two special cases.

Because the uniform distribution on [0, 1] has mean % and variance 11—2, the sum of

12 uniform random variables, minus 6, has mean 0 and variance 1. The distribution
of this sum is quite close to normal; in fact, before better algorithms were developed,
it was commonly used in computers for generating normal random variables from
uniform ones. It is possible to compare the real and approximate distributions analyt-
ically, but we will content ourselves with a simple demonstration. Figure 5.1 shows
a histogram of 1000 such sums with a superimposed normal density function. The fit
is surprisingly good, especially considering that 12 is not usually regarded as a large
value of n. ]

250 -

200 -

™
]

Count

100 |

50

—4 -2 0 2 4 6
Value

FIGURE 5.1 A histogram of 1000 values, each of which is the sum of 12 uniform

[~3. 3] pseudorandom variables, with an approximating standard normal density.
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EXAMPLED

EXAMPLE E

The sum of n independent exponential random variables with parameter A = 1
follows a gamma distribution with A = 1 and « = n (Example F in Section 4.5). The
exponential density is quite skewed; therefore, a good approximation of a standardized
gamma by a standardized normal would not be expected for small . Figure 5.2 shows
the cdf’s of the standard normal and standardized gamma distributions for increasing
values of n. Note how the approximation improves as n increases. [ |

1.0

Cumulative probability

FIGURE 5.2 The standard normal cdf (solid line) and the cdf’s of standardized
gamma distributions with « = 5 (long dashes), @ = 10 (short dashes), and & = 30 (dots).

Let us now consider some applications of the central limit theorem.

Measurement Error

Suppose that X, ..., X,, are repeated, independent measurements of a quantity, p,
and that E(X;) = u and Var(X;) = o2. The average of the measurements, X, is
used as an estimate of . The law of large numbers tells us that X converges to
w in probability, so we can hope that X is close to u if n is large. Chebyshev’s
inequality allows us to bound the probability of an error of a given size, but the
central limit theorem gives a much sharper approximation to the actual error. Suppose
that we wish to find P(]X — | < ¢) for some constant c. To use the central limit
theorem to approximate this probability, we first standardize, using E(X) = u and
Var(X) = o?/n:

P(X —pul<c)=P(-c<X—pu<c

_p —c X —n c
- (o/ﬁ TN a/ﬁ)

o(L)-+(F)
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For example, suppose that 16 measurements are taken with 0 = 1. The proba-
bility that the average deviates from p by less than .5 is approximately

P(X —p| <.5) = ®(5 x 4) — d(—.5 x 4) = .954

This sort of reasoning can be turned around. That is, given ¢ and y, n can be found
such that

P(X—ul<c) =y ]

Normal Approximation to the Binomial Distribution
Since a binomial random variable is the sum of independent Bernoulli random vari-
ables, its distribution can be approximated by a normal distribution. The approxima-
tion is best when the binomial distribution is symmetric—that is, when p = % A
frequently used rule of thumb is that the approximation is reasonable when np > 5
and n(1 — p) > 5. The approximation is especially useful for large values of n, for
which tables are not readily available.

Suppose that a coin is tossed 100 times and lands heads up 60 times. Should we
be surprised and doubt that the coin is fair?

To answer this question, we note that if the coin is fair, the number of heads, X, is
a binomial random variable with n = 100 trials and probability of success p = % S0
that £(X) = np = 50 (see Example A of Section 4.1) and Var(X) = np(1 —p) =25
(see Example B of Section 4.3). We could calculate P(X = 60), which would be a
small number. But because there are so many possible outcomes, P (X = 50) is also
a small number, so this calculation would not really answer the question. Instead, we
calculate the probability of a deviation as extreme as or more extreme than 60 if the
coin is fair; that is, we calculate P(X > 60). To approximate this probability from
the normal distribution, we standardize:

X — —
P(XZ60)=P( 550260550>

~1—d(Q)
= .0228

The probability is rather small, so the fairness of the coin is called into question. B

Farticle Size Distribution
The distribution of the sizes of grains of particulate matter is often found to be quite
skewed, with a slowly decreasing right tail. A distribution called the lognormal is
sometimes fit to such a distribution, and X is said to follow a lognormal distribution if
log X has a normal distribution. The central limit theorem gives a theoretical rationale
for the use of the lognormal distribution in some situations.

Suppose that a particle of initial size y, is subjected to repeated impacts, that on
each impact a proportion, X;, of the particle remains, and that the X; are modeled as
independent random variables having the same distribution. After the first impact, the
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size of the particle is Y; = X yy; after the second impact, the size is Y» = X, X yo;
and after the nth impact, the size is
Yn = Xanfl e X2X1J’0
Then
n
log ¥, =logyo+ » log X;
i=1

and the central limit theorem applies to log V,,. [ |

A similar construction is relevant to the theory of finance. Suppose that an initial
investment of value v is made and that returns occur in discrete time, for example,
daily. If the return on the first day is Rj, then the value becomes V|, = Rjv,. After
day two the value is V, = R; R vy, and after day n the value is

Vi=R,R,_1---Rivg
The log value is thus
log V,, = log vy + Z log R;
i=1

If the returns are independent random variables with the same distribution, then the
distribution of log V,, is approximately normally distributed.

5.4 Problems

1. Let Xy, X», .. .beasequence of independent random Variibles with E(X;) =
and Var(X;) = o. Show thatif n =2 _" , 7 — 0, then X — 1 in probability.

2. Let X; be as in Problem 1 but with £(X;) = y; and n~ 'S i — . Show
that X — u in probability.

3. Suppose that the number of insurance claims, N, filed in a year is Poisson
distributed with E(N) = 10,000. Use the normal approximation to the Poisson
to approximate P(N > 10,200).

4. Suppose that the number of traffic accidents, N, in a given period of time is dis-
tributed as a Poisson random variable with E (N) = 100. Use the normal approx-
imation to the Poisson to find A such that P(100 — A <N <100+ A) ~ .9.

5. Using moment-generating functions, show that as n — oo, p — 0, and
np — A, the binomial distribution with parameters n and p tends to the Poisson
distribution.

6. Using moment-generating functions, show that as « — oo the gamma distri-
bution with parameters « and A, properly standardized, tends to the standard
normal distribution.

7. Show that if X,, — c in probability and if g is a continuous function, then
g(X,) — g(c) in probability.
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. Compare the Poisson cdf and the normal approximation for (a) A = 10,
(b) A = 20, and (c) A = 40.
. Compare the binomial cdf and the normal approximation for (a) n = 20 and

p=.2,and(b)n =40 and p = .5.

A six-sided die is rolled 100 times. Using the normal approximation, find the
probability that the face showing a six turns up between 15 and 20 times.
Find the probability that the sum of the face values of the 100 trials is less
than 300.

A skeptic gives the following argument to show that there must be a flaw in
the central limit theorem: “We know that the sum of independent Poisson ran-
dom variables follows a Poisson distribution with a parameter that is the sum
of the parameters of the summands. In particular, if n independent Poisson
random variables, each with parameter n~!, are summed, the sum has a Pois-
son distribution with parameter 1. The central limit theorem says that as n
approaches infinity, the distribution of the sum tends to a normal distribution,
but the Poisson with parameter 1 is not the normal.” What do you think of this
argument?

The central limit theorem can be used to analyze round-off error. Suppose that
the round-off error is represented as a uniform random variable on [— % %]. If
100 numbers are added, approximate the probability that the round-off error
exceeds (a) 1, (b) 2, and (c) 5.

A drunkard executes a “random walk” in the following way: Each minute he
takes a step north or south, with probability % each, and his successive step
directions are independent. His step length is 50 cm. Use the central limit theo-
rem to approximate the probability distribution of his location after 1 h. Where
is he most likely to be?

Answer Problem 13 under the assumption that the drunkard has some idea of
where he wants to go so that he steps north with probability % and south with
probability ;.

Suppose that you bet $5 on each of a sequence of 50 independent fair games.
Use the central limit theorem to approximate the probability that you will lose
more than $75.

Suppose that X, ..., X, are independent random variables with density func-
tions

f(x) =2x, 0<x<l1
Let S = X; 4+ --- + X». Use the central limit theorem to approximate

P(S < 10).

Suppose that a measurement has mean . and variance o> = 25. Let X be the
average of n such independent measurements. How large should n be so that
P(X —pul <1)=.95?
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18.

19.

20.
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23.

24.

25.

Suppose that a company ships packages that are variable in weight, with an aver-
age weight of 15 Ib and a standard deviation of 10. Assuming that the packages
come from a large number of different customers so that it is reasonable to
model their weights as independent random variables, find the probability that
100 packages will have a total weight exceeding 1700 1b.

a. Use the Monte Carlo method with n = 100 and n = 1000 to estimate
fol cos(2mx) dx. Compare the estimates to the exact answer.

b. Use Monte Carlo to evaluate [, cos(27x?)dx. Can you find the exact
answer?

What is the variance of the estimate of an integral by the Monte Carlo method
(Example A of Section 5.2)? [Hint: Find E (I Compare the standard
deviations of the estimates of part (a) of previous problem to the actual errors
you made.

This problem introduces a variation on the Monte Carlo integration technique
of Example A of Section 5.2. Suppose that we wish to evaluate

b
1) = / F) dx

Let g be a density function on [a, b]. Generate X, - - -, X,, from g and estimate
I by

; 1o~ f(X)
"= ; g(X;)

a. Show that E(1(f)) = I(f).

b. Find an expression for Var(1(f)). Give an example for which it is finite and
an example for which it is infinite. Note that if it is finite, the law of large
numbers implies that i(f) — I(f)asn — oo.

c. Show thatif a = 0,5 = 1, and g is uniform, this is the same Monte Carlo
estimate as that of Example A of Section 5.2. Can this estimate be improved
by choosing g to be other than uniform? (Hint: Compare variances.)

Use the central limit theorem to find A such that P(|I(f) — I(f)| < A) =
.05, where I(f) is the Monte Carlo estimate of fol cos(2mrx) dx based on
1000 points.

An irregularly shaped object of unknown area A is located in the unit square
0 <x <1,0 <y < 1.Consider arandom point distributed uniformly over the
square; let Z = 1 if the point lies inside the object and Z = 0 otherwise. Show
that £(Z) = A. How could A be estimated from a sequence of n independent
points uniformly distributed on the square?

How could the central limit theorem be used to gauge the probable size of the
error of the estimate of the previous problem? Denoting the estimate by A, if
A = .2, how large should n be so that P(|A — A| < .01) = .99?

Let X be a continuous random variable with density function f (x) = %xz, -1 <
x < 1. Sketch this density function. Use the central limit theorem to sketch
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the approximate density function of § = X, + --- + X5y, where the X; are
independent random variables with density f. Similarly, sketch the approxi-
mate density functions of §/50 and §/+/50. For each sketch, label at least three
points on the horizontal axis.

Suppose that a basketball player can score on a particular shot with probabil-
ity .3. Use the central limit theorem to find the approximate distribution of S,
the number of successes out of 25 independent shots. Find the approximate
probabilities that S is less than or equal to 5, 7, 9, and 11 and compare these to
the exact probabilities.

Prove that if a, — a, then (1 +a,/n)" — e“.

Let f, be a sequence of frequency functions with f,(x) = 1 if x = £(3)"
and f,(x) = 0 otherwise. Show that lim f, (x) = 0 for all x, which means that
the frequency functions do not converge to a frequency function, but that there
exists a cdf F such that lim F, (x) = F(x).

In addition to limit theorems that deal with sums, there are limit theorems that
deal with extreme values such as maxima or minima. Here is an example. Let
Ui, ..., U, be independent uniform random variables on [0, 1], and let U, be
the maximum. Find the cdf of U, and a standardized U, and show that the
cdf of the standardized variable tends to a limiting value.

Generate a sequence Uy, U,, ..., Uy of independent uniform random vari-
ables on a computer. Let S, = Y/, U; forn = 1,2, ..., 1000. Plot each of
the following versus n:

a. S,

b. S,/n

c. S,—n/2

d. (S, —n/2)/n
e (S, —n/2)/Jn

Explain the shapes of the resulting graphs using the concepts of this chapter.
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CHAPTER 6

Distributions Derived
from the Normal
Distribution

Introduction

This chapter assembles some results concerning three probability distributions derived
from the normal distribution—the Xz’ t,and F distributions. These distributions occur
in many statistical problems and will be used in later chapters.

x2, t, and F Distributions

DEFINITION
If Z is a standard normal random variable, the distribution of U = Z? is called
the chi-square distribution with 1 degree of freedom. [ |

We have already encountered the chi-square distribution in Section 2.3, where
we saw that it is a special case of the gamma distribution with parameters % and %
The chi-square distribution with 1 degree of freedom is denoted x;. It is useful to note
thatif X ~ N(u, 0?),then (X —p)/o ~ N(O, 1), and therefore [(X — ) /o ]* ~ xi.

DEFINITION

IfU,, U,, ..., U, are independent chi-square random variables with 1 degree of
freedom, the distribution of V = U; + U, + - - - 4+ U, is called the chi-square
distribution with n degrees of freedom and is denoted by 2. [ |
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From Example F in Section 4.5, we know that the sum of independent gamma
random variables that have the same value of A follows a gamma distribution, and
therefore the chi-square distribution with n degrees of freedom is a gamma distribution

with o = n/2 and A = 1. Its density is

1
_ (n/2)~1,-v/2 >0
f) T (1/2) " e ", v >

Its moment-generating function is
M@)=(1-20)"?

Also, E(V) = nand Var(V) = 2n. Toindicate that V follows a chi-square distribution
with n degrees of freedom, we write V' ~ Xf. A notable consequence of the definition
of the chi-square distribution is that if U and V are independent and U ~ x?2 and
Vo~ x2,thenU+V ~x2, .

We now turn to the ¢ distribution.

DEFINITION
IfZ~N@©,1)and U ~ X,f and Z and U are independent, then the distribution
of Z//U/n is called the ¢ distribution with n degrees of freedom. u

PROPOSITION A

The density function of the ¢ distribution with n degrees of freedom is

Tl(n + 1)/2] (1 N t2>‘(”+”/2

fo = L (n)2) n

Proof

This is proved by a standard method. The density function of /U /n is straight-
forward to obtain, and the density function of the quotient of two independent
random variables was derived in Section 3.6.1. The details of the proof are left
as an end-of-chapter problem. u

From the density function of Proposition A, f(¢) = f(—t), so the ¢ distribution
is symmetric about zero. As the number of degrees of freedom approaches infinity,
the ¢ distribution tends to the standard normal distribution; in fact, for more than 20
or 30 degrees of freedom, the distributions are very close. Figure 6.1 shows several ¢
densities. Note that the tails become lighter as the degrees of freedom increase.
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Density

Fl

4

GURE 6.1 Three t densities with 5 (long dashes), 10 (short dashes), and 30 (dots)

degrees of freedom and the standard normal density (solid line).

DEFINITION

Let U and V be independent chi-square random variables with m and n degrees
of freedom, respectively. The distribution of

_U/m

~ V/n
is called the F distribution with m and n degrees of freedom and is denoted by
1 o |

PROPOSITION B
The density function of W is given by

r 2 m/2 —(m+n)/2
Flwy = SRR IRt (14 ) w0
L'(m/2)I'(n/2) \n n
Proof
W is the ratio of two independent random variables, and its density follows from
the results given in Section 3.6.1. [ |

It can be shown that, for n > 2, E(W) exists and equals n/(n — 2). From the

definitions of the t and F distributions, it follows that the square of a #, random
variable follows an F) , distribution (see Problem 6 at the end of this chapter).
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The Sample Mean and the Sample Variance

Let Xy, ..., X, be independent N (u, o%) random variables; we sometimes refer to
them as a sample from a normal distribution. In this section, we will find the joint
and marginal distributions of

n

DX

i=1

1 < —
§? = n_lz(xi—X)z
i=1

7:

S| =

These are called the sample mean and the sample variance, respectively. First note
that because X is a linear combination of independent normal random variables, it is
normally distributed with

EX)=p

_ 02
Var(X) = —
n

As a preliminary to showing that X and S” are independently distributed, we
establish the following theorem.

THEOREM A

zhe random \Eriable X and the vector of random variables (X; — X, X, —
X, ..., X, — X) are independent.

Proof

At the level of this course, it is difficult to give a proof that provides sufficient
insight into why this result is true; a rigorous proof essentially depends on geo-
metric properties of the multivariate normal distribution, which this book does not
cover. We present a proof based on moment-generating functions; in particular,
we will show that the joint moment-generating function

M(s, t, ..., 1) = E{exp[sY—i— X, —X)+- -+ 6,(X, — X1}

factors into the product of two moment-generating functions—one of X and the
other of (X; — X), ..., (X, — X). The factoring implies (Section 4.5) that the
random variables are independent of each other and is accomplished through
some algebraic trickery. First we observe that since

En:t,-(X,- —7) = zn:liXi —HYZ
i=l i=l
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then

n

KX+> 6 - =% [%Hn -1 x

i=1 i=1

where

Za —+Z(t,—z)2

Now we have

M(s,ty, ..., t) = My,.x,(ai, ...,a,)

and since the X; are independent normal random variables, we have

Ms, 11, ... 1) = [ [ Mx, (@)
i=1
Teso (s )
=[] exp ( nai + =
i=1 2
n 0_2 n 2
= ex a; + — a;

= exp

02
us+—<—)+—§ (6 —7)°
= o o §nt 7)?
_exp(us—i-ES)eXp 7i:1(i_ )

The first factor is the mgf of X. Since the mgf of the vector (X, — X, ..., X, — X)
can be obtained by setting s = 0 in M, the second factor is this mgf. ]
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COROLLARY A

X and S? are independently distributed.

Proof

This follows immediately since S* is a function of the vector (X, — X, ...,
X, — X), which is independent of X. [ |

The next theorem gives the marginal distribution of S2.

THEOREM B
The distribution of (n — 1)S?/o? is the chi-square distribution with n — 1 degrees

of freedom.

Proof
We first note that

1 n ) n X,—M 2 5
=2 Xi-w =Z< - )~x,,

i=1 i=1

Also,
1 & 2 1 & — — 5
=2 Xi—w'== (X =+ X -]
i=1 i=1
Expanding the square and using the fact that > ;| (X; — X) = 0, we obtain
1 & 1 & — X —u
S Ki-w=— (Xi—X)2+< )

This is a relation of the form W = U + V. Since U and V are independent
by Corollary A, My (t) = My (t)My (t). W and V both follow chi-square distri-
butions, so

2

My (1)

My (1)

(1 —2¢)~2
T A—2)2
=(1—2r)""P2

My(t) =

The last expression is the mgf of a random variable with a x> , distribution. ®

One final result concludes this chapter’s collection.
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OROLLARY B
Let X and S? be as given at the beginning of this section. Then
X —n .
N

Proof

We simply express the given ratio in a different form:

X —u
X—n _ <0/ﬁ>
S/yn /8252

The latter is the ratio of an N (0, 1) random variable to the square root of an
independent random variable with a x? , distribution divided by its degrees of
freedom. Thus, from the definition in Section 6.2, the ratio follows a ¢ distribution
with n — 1 degrees of freedom. [ |

6.4 Problems

[

. Prove Proposition A of Section 6.2.
. Prove Proposition B of Section 6.2.

. Let X be the average of a sample of 16 independent normal random variables
with mean 0 and variance 1. Determine ¢ such that

P(X|<c)=.5

. If T follows a t; distribution, find 7y, such that (a) P(|T| < ty)) = .9 and
(b) P(T > ty) = .05.

. Show thatif X ~ F, ,,, then X! ~ F,, .
. Show that if T ~ t,, then T? ~ F, .

. Show that the Cauchy distribution and the ¢ distribution with 1 degree of free-
dom are the same.

. Show thatif X and Y are independent exponential random variables with A = 1,
then X /Y follows an F distribution. Also, identify the degrees of freedom.

9. Find the mean and variance of S2, where S? is as in Section 6.3.
10. Show how to use the chi-square distribution to calculate P(a < S*/0? < b).
11. Let X, ..., X, be asample from an N (ux, o?) distributionand Y7, ..., Y,, be

an independent sample from an N (iy, o) distribution. Show how to use the
F distribution to find P(S%/S; > ¢).
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CHAPTER 7

Survey Sampling

Introduction

Resting on the probabilistic foundations of the preceding chapters, this chapter marks
the beginning of our study of statistics by introducing the subject of survey sampling.
As well as being of considerable intrinsic interest and practical utility, the development
of the elementary theory of survey sampling serves to introduce several concepts and
techniques that will recur and be amplified in later chapters.

Sample surveys are used to obtain information about a large population by exam-
ining only a small fraction of that population. Sampling techniques have been used
in many fields, such as the following:

* Governments survey human populations; for example, the U.S. government con-
ducts health surveys and census surveys.

» Sampling techniques have been extensively employed in agriculture to estimate
such quantities as the total acreage of wheat in a state by surveying a sample of
farms.

* The Interstate Commerce Commission has carried out sampling studies of rail and
highway traffic. In one such study, records of shipments of household goods by
motor carriers were sampled to evaluate the accuracy of preshipment estimates of
charges, claims for damages, and other variables.

* In the practice of quality control, the output of a manufacturing process may be
sampled in order to examine the items for defects.

 During audits of the financial records of large companies, sampling techniques may
be used when examination of the entire set of records is impractical.

The sampling techniques discussed here are probabilistic in nature—each mem-
ber of the population has a specified probability of being included in the sample, and
the actual composition of the sample is random. Such techniques differ markedly from

199
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7.2

EXAMPLE A

the type of sampling scheme in which particular population members are included
in the sample because the investigator thinks they are typical in some way. Such a
scheme may be effective in some situations, but there is no way mathematically to
guarantee its unbiasedness (a term that will be precisely defined later) or to estimate
the magnitude of any error committed, such as that arising from estimating the popu-
lation mean by the sample mean. We will see that using a random sampling technique
has a consequence that estimates can be guaranteed to be unbiased and probabilistic
bounds on errors can be calculated. Among the advantages of using random sampling
are the following:

* The selection of sample units at random is a guard against investigator biases, even
unconscious ones.

* A small sample costs far less and is much faster to survey than a complete enumer-
ation.

* The results from a small sample may actually be more accurate than those from a
complete enumeration. The quality of the data in a small sample can be more easily
monitored and controlled, and a complete enumeration may require a much larger,
and therefore perhaps more poorly trained, staff.

* Random sampling techniques make possible the calculation of an estimate of the
error due to sampling.

* In designing a sample, it is frequently possible to determine the sample size neces-
sary to obtain a prescribed error level.

Peck et al. (2005) contains several interesting papers about applications of
sampling.

Population Parameters

This section defines those numerical characteristics, or parameters, of the population
that we will estimate from a sample. We will assume that the population is of size
N and that associated with each member of the population is a numerical value of
interest. These numerical values will be denoted by xi, x5, - - -, xy. The variable x;
may be a numerical variable such as age or weight, or it may take on the value 1 or
0 to denote the presence or absence of some characteristic such as gender. We will
refer to the latter situation as the dichotomous case.

This is the first of many examples in this chapter in which we will illustrate ideas
by using a study by Herkson (1976). The population consists of N = 393 short-
stay hospitals. We will let x; denote the number of patients discharged from the ith
hospital during January 1968. A histogram of the population values is shown in Fig-
ure 7.1. The histogram was constructed in the following way: The number of hospitals
that discharged 0-200, 201-400, . .., 2801-3000 patients were graphed as horizon-
tal lines above the respective intervals. For example, the figure indicates that about
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FIGURE 7.1 Histogram of the numbers of patients discharged during January 1968
from 393 short-stay hospitals.

40 hospitals discharged from 601 to 800 patients. The histogram is a convenient
graphical representation of the distribution of the values in the population, being
more quickly assimilated than would a list of 393 values. |

We will be particularly interested in the population mean, or average,

1 X
M=N§Xi

For the population of 393 hospitals, the mean number of discharges is 814.6. Note
the location of this value in Figure 7.1. In the dichotomous case, where the presence
or absence of a characteristic is to be determined, u equals the proportion, p, of
individuals in the population having the particular characteristic, because in the sum
above, each x; is either O or 1. The sum thus reduces to the number of 1s and when
divided by N, gives the proportion, p.

The population total is

N
T = in =Nu
i=1

The total number of people discharged from the population of hospitals is 7 =
320, 138. In the dichotomous case, the population total is the total number of members
of the population possessing the characteristic of interest.

We will also need to consider the population variance,

1 N
2 _ L 2
G—N;(xz 23]
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A useful identity can be obtained by expanding the square in this equation:

2 1 . 2 . 2
o =N in—ZuZx,»—l—N,u
i=1 i=1

In the dichotomous case, the population variance reduces to p(1 — p):

1
N

]

2 2
X;—

I
M=

i=1
=p-p
=p(—-p)

2

Here we used the fact that because each x; is 0 or 1, each xi2 isalsoOor 1.

The population standard deviation is the square root of the population variance
and is used as a measure of how spread out, dispersed, or scattered the individual values
are. The standard deviation is given in the same units (for example, inches) as are the
population values, whereas the variance is given in those units squared. The variance
of the discharges is 347,766, and the standard deviation is 589.7; examination of
the histogram in Figure 7.1 makes it clear that the latter number is the more reasonable
description of the spread of the population values.

Simple Random Sampling

The most elementary form of sampling is simple random sampling (s.r.s.): Each
particular sample of size n has the same probability of occurrence; that is, each of the
(2’ ) possible samples of size n taken without replacement has the same probability.
We assume that sampling is done without replacement so that each member of the
population will appear in the sample at most once. The actual composition of the
sample is usually determined by using a table of random numbers or a random number
generator on a computer. Conceptually, we can regard the population members as
balls in an urn, a specified number of which are selected for inclusion in the sample
at random and without replacement.

Because the composition of the sample is random, the sample mean is random.
An analysis of the accuracy with which the sample mean approximates the population
mean must therefore be probabilistic in nature. In this section, we will derive some
statistical properties of the sample mean.
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The Expectation and Variance of the Sample Mean

We will denote the sample size by n (n is less than N) and the values of the sample

members by X, X,, ..., X,. Itis important to realize that each X; is a random vari-

able. In particular, X; is not the same as x;: X is the value of the ith member of the sam-

ple, which is random and x; is that of the ith member of the population, which is fixed.
We will consider the sample mean,

— 1

as an estimate of the population mean. As an estimate of the population total, we will
consider

T=NX

Properties of T will follow readily from those of X. Since each X; is a random
variable, so is the sample mean; its probability distribution is called its sampling
distribution. In general, any numerical value, or statistic, computed from a random
sample is arandom variable and has an associated sampling distribution. The sampling
distribution of X determines how accurately X estimates j; roughly speaking, the
more tightly the sampling distribution is centered on p, the better the estimate.

To illustrate the concept of a sampling distribution, let us look again at the population
of 393 hospitals. In practice, of course, the population would not be known, and only
one sample would be drawn. For pedagogical purposes here, we can consider the
sampling distribution of the sample mean from this known population. Suppose, for
example, that we want to find the sampling distribution of the mean of a sample of size
16. In principle, we could form all (31963) samples and compute the mean of each one—
this would give the sampling distribution. But because the number of such samples is
of the order 103, this is clearly not practical. We will thus employ a technique known
as simulation. We can estimate the sampling distribution of the mean of a sample of
size n by drawing many samples of size n, computing the mean of each sample, and
then forming a histogram of the collection of sample means. Figure 7.2 shows the
results of such a simulation for sample sizes of 8, 16, 32, and 64 with 500 replications
for each sample size. Three features of Figure 7.2 are noteworthy:

1. All the histograms are centered about the population mean, §14.6.

2. As the sample size increases, the histograms become less spread out.

3. Although the shape of the histogram of population values (Figure 7.1) is not
symmetric about the mean, the histograms in Figure 7.2 are more nearly so.

These features will be explained quantitatively. ]

As we have said, X is a random variable whose distribution is determined by
that of the X,;. We thus examine the distribution of a single sample element, X;. It
should be noted that the following lemma holds whether sampling is with or without
replacement.
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FIGURE 7.2 Histograms of the values of the mean number of discharges in 500
simple random samples from the population of 393 hospitals. Sample sizes: (a) n = 8,
(byn=16, (c)n=32, (d) n=64.

We need to be careful about the values that the random variable X; can assume.
The i"" sample member is equally likely to be any of the N population members. If
all the population values were distinct, we would then have P(X; = x;) = 1/N.
But the population values may not be distinct (for example, in the dichotomous case
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there are only two values, O and 1). If K members of the population have the same
value ¢, then P(X; = ¢) = k/N. We use this construction in proving the following
lemma.

LEMMA A
Denote the distinct values assumed by the population members by &, &, - . ., &,
and denote the number of population members that have the value ¢; by n;, j =
1,2,...,m. Then X; is a discrete random variable with probability mass
function
n
PX;i=¢) =~
( ¢j) N
Also,
E(X)) =pu
Var(X;) = o2
Proof
The only possible values that X; can assume are ¢y, &3, . . . , {,. Since each mem-

ber of the population is equally likely to be the ith member of the sample, the
probability that X; assumes the value ¢; is thus n; /N. The expected value of the
random variable X; is then

m 1 m
E(X;) = ZCjP(Xi =¢;) = N anfj =u
=i

j=1

The last equation follows because 7 ; population members have the value ¢;
and the sum is thus equal to the sum of the values of all the population members.
Finally,

Var(X;) = E(X?) — [E(X)]?

1 m

N 2Nt —H
j=1

:0‘2

Here we have used the fact that ) ¥ x7 = >~ "_n;¢7 and the identity for the
population variance derived in Section 7.2. |

As a measure of the center of the sampling distribution, we will use E(X). As a
measure of the dispersion of the sampling distribution about this center, we will use
the standard deviation of X. The key results that will be obtained shortly are that the
sampling distribution is centered at n and that its spread is inversely proportional to
the square root of the sample size, n. We first show that the sampling distribution is
centered at u.
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THEOREM A
With simple random sampling, E(X) = u.

Proof

Since, from Lemma A, E(X;) = u, it follows from Theorem A in Section 4.1.2
that

— 1<
EX)=-Y EX,)=
X) =~ ; (X)) =1 o
From Theorem A, we have the following corollary.

COROLLARY A
With simple random sampling, E(T) = 7.

Proof

E(T) = E(NX)
= NE(X)

= 1 ]

In the dichotomous case, & = p, and X is the proportion of the sample that
possesses the characteristic of interest. In this case, X will be denoted by p. We have
shown that E( p) = p.

It is important to keep in mind that X is random. The result E(X) = p can be
interpreted to mean that “on the average” X = w. In general, if we wish to estimate
a population parameter, 6 say, by a function 9 of the sample, X, X5, ..., X,,, and
E(0) = 0, whatever the value of & may be, we say that § is unbiased. Thus, X
and T are unbiased estimates of w and t. On average they are correct. We next
investigate how variable they are, by deriving their variances and standard deviations.
Section 4.2.1 introduced the concepts of bias and variance in the context of a model
of measurement error, and these concepts are also relevant in this new context. In
Chapter 4, it was shown that

Mean squared error = variance + bias’

Since X and T are unbiased, their mean squared errors are equal to their variances.
We next find Var(X). Since X = n~'>_" | X;, it follows from Corollary A of
Section 4.3 that

Var(X) = %iicov(xi’ X;)

i=1 j=1
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Suppose that sampling were done with replacement. Then the X; would be inde-
pendent, and for i # j we would have Cov(X;, X;) = 0, whereas Cov(X;, X;) =
Var(X;) = o2. It would then follow that

_ 1 &
Var X = — > Var(X))
i=1

and that the standard deviation of X, also called its standard error, would be
o
ox = —F=

Jn

Sampling without replacement induces dependence among the X;, which com-
plicates this simple result. However, we will see that if the sample size n is small
relative to the population size N, the dependence is weak and this simple result holds
to a good approximation.

To find the variance of the sample mean in sampling without replacement we
need to find Cov(X;, X;) fori # j.

LEMMA B

For simple random sampling without replacement,
Cov(X;, X;) = —0?/(N — 1) ifi # j

Using the identity for covariance established at the beginning of Section 4.3,
Cov(X;, X;) = E(X;X;) — E(X;,)E(X})

and

E(X;X;) = ZZCkCzP(Xi =g and X; =§)

k=1 I=1
=D GPXi =40 Y 4P (X; = 41X = )
k=1 =1

from the multiplication law for conditional probability. Now,

_ o m/(N=1), ifk #£1
B0 =l _gk)_{(nz—l)/(N—l), ik =1

Now if we express

- _ _ _ n; nk—l
;;IHX,- = alX; —ck)—g;;,N_lmN_l

A e e
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the expression for £(X; X ;) becomes

m ni m n ~ & B 1 - m ,
;{kN (;K’N—l N—1>_N(N—1) (t ;g"”">
2

_ T B 1 L.
TNN-1) NWN-1) ;gknk

Nu? 1 2 2
_N—l_N—l(M +09)
2
_ 29
“H TN

Finally, subtracting E(X;)E(X;) = p? from the last equation, we have
2
N —1
fori # j. [ ]

COV(XI', Xj) = —

(Alternative proofs of Lemma B are outlined in Problems 25 and 26 at the end of
this chapter.) This lemma shows that X; and X ; are not independent of each other for
i # J, but that the covariance is very small for large values of N. We are now able to
derive the following theorem.

THEOREM B

With simple random sampling,

Var(X)

Il
S =%
7~ N\
==

[

[ ]
~——

Proof
From Corollary A of Section 4.3,

Var(X) = niz >0 Cov(xi, X))

i=1 j=1

1 « 1 &
— ;ZVM(X,) + EZZCOV(X,-, X))
i=1 i=1 j#i
0_2 2

-2 am—1
n n2n(n )N—l

After some algebra, this gives the desired result. [ |
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Notice that the variance of the sample mean in sampling without replacement
differs from that in sampling with replacement by the factor

=

which is called the finite population correction. The ratio n /N is called the sampling
fraction. Frequently, the sampling fraction is very small, in which case the standard
error (standard deviation) of X is

ox A NG

We see that, apart from the usually small finite population correction, the spread of the
sampling distribution and therefore the precision of X are determined by the sample
size (n) and not by the population size (N ). As will be made more explicit later,
the appropriate measure of the precision of the sample mean is its standard error,
which is inversely proportional to the square root of the sample size. Thus, in order
to double the accuracy, the sample size must be quadrupled. (You might examine
Figure 7.2 with this in mind.) The other factor that determines the accuracy of the
sample mean is the population standard deviation, o. If ¢ is small, the population
values are not very dispersed and a small sample will be fairly accurate. But if the
values are widely dispersed, a much larger sample will be required in order to attain
the same accuracy.

If the population of hospitals is sampled without replacement and the sample size is

n =32,
o | n—1
oy = — —
X /n\ N -1

_ 87 /31
J32 392

= 104.2 x .96

= 100.0

Notice that because the sampling fraction is small, the finite population correction
makes little difference. To see that o = 100.0 is a reasonable measure of accuracy,
examine part (b) of Figure 7.2 and observe that the vast majority of sample means
differed from the population mean (814) by less than two standard errors; i.e., the
vast majority of sample means were in the interval (614, 1014). [ |

Let us apply this result to the problem of estimating a proportion. In the population of
hospitals, a proportion p = .654 had fewer than 1000 discharges. If this proportion
were estimated from a sample as the sample proportion p, the standard error of p
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could be found by applying Theorem B to this dichotomous case:

UA_\/p(l—p)\/l_n—l
P n N —1

For example, for n = 32, the standard error of p is

\/.654>< .346\/ 31
0p =] —— 1= ——
32 392

= .08 [ |

The precision of the estimate of the population total does depend on the population
size, N.

COROLLARY B

With simple random sampling,

2 _
Var(T) = N2 (U—> N=n
n

N -1

Proof
Since T = NX,

Var(T) = N? Var(X) -

7.3.2 Estimation of the Population Variance

A sample survey is used to estimate population parameters, and it is desirable also
to assess and quantify the variability of the estimates. In the previous section, we
saw how the standard error of an estimate may be determined from the sample size
and the population variance. In practice, however, the population variance will not
be known, but as we will show in this section, it can be estimated from the sample.
Since the population variance is the average squared deviation from the population
mean, estimating it by the average squared deviation from the sample mean seems
natural:

1 n -
A2 2
=-)) (X;—-X
6 n; )
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The following theorem shows that this estimate is biased.

THEOREM A

With simple random sampling,

o 2 n—1 N
E(a)_0< . )—

Proof

Expanding the square and proceeding as in the identity for the population variance
in Section 7.2, we find

Il = _
62 = - ; =
Thus,
1 — _
E(6%) = - ; E(X}) - EX?
Now, we know that
E(X}) = Var(X)) + [E(X)P
— o+l
Similarly, from Theorems A and B of Section 7.3.1,
E(X? = Var(X) + [E(X)]?

_ o? | n—1 42

on N —1 H
Substituting these expressions for E(X?) and E (X?) in the preceding equation
for E(6?) gives the desired result. u

Because N > n, it follows with a little algebra that

n—1 N
n N-—1

<1

so that E(6?%) < o?; 62 thus tends to underestimate o>. From Theorem A, we see
that an unbiased estimate of o> may be obtained by multiplying 62 by the factor
n(N —1)/[(n—1)N]. Thus, an unbiased estimate of 6% is - (1— ) Y1, (X; — X)*.
We also have the following corollary.
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COROLLARY A

An unbiased estimate of Var(X) is

=2 () () (5=)

where

1 & —
2 2
_—E:Xi_x
S n_1i=1( )

Proof
Since

2 _
= (427)

an unbiased estimate of Var(X) may be obtained by substituting in an unbiased
estimate of o2, Algebra then yields the desired result. [ |

Similarly, an unbiased estimate of the variance of 7', the estimator of the popu-
lation total, is

2 _ 2.2
s7 = N7s3

For the dichotomous case, in which each X; is O or 1, note that

1 & — 1 & —
- X, - X)?=-> xX?-X
=p(1—p)
Therefore,

P n N
s7=——p(—=p)
n—1

Thus, as a special case of Corollary A, we have the following corollary.

COROLLARY B
An unbiased estimate of Var(p) is

3PP )

In many cases, the sampling fraction, n/N, is small and may be neglected. Fur-
thermore, it often makes little difference whether n — 1 or n is used as the divisor.



EXAMPLE A

EXAMPLE B

EXAMPLE C

7.3 Simple Random Sampling 213

The quantities sy, s7, and s are called estimated standard errors. If we knew
them, the actual standard errors, o, o7 and o3, would be used to gauge the accuracy
of the estimates X, T and p. If they are not known, which is the typical case, the
estimated standard errors are used in their place.

A simple random sample of 50 of the 393 hospitals was taken. From this sample,
X = 938.5 (recall_that, in fact, © =814.6) and s =614.53 (0 =590). An estimate
of the variance of X is

2

2= (1- 1) =659
X n N

The estimated standard error of X is

sy = 81.19

49

l— 35 7
gives a rough idea of how accurate the value of X is; in this case, we see that the
magnitude of the error is of the order 80, as opposed to 8 or 800, say. In fact, the error
was 123.9, or about 1.5 s%. [ |

(Note that the true value is o = \/% = 78.) This estimated standard error

From the same sample, the estimate of the total number of discharges in the population
of hospitals is

T = NX = 368,831

Recall that the true value of the population total is 320,139. The estimated standard
error of T is

st = Nsy = 31,908

Again, this estimated standard error can be used as a rough gauge of the estimation
error. ]

Let p be the proportion of hospitals that had fewer than 1000 discharges—that is,
p = .654. In the sample of Example A, 26 of 50 hospitals had fewer than 1000
discharges, so

26

— =.52
50

ﬁ =
The variance of p is estimated by

Sl
s%zu(1—ﬁ)=.0045
P n—1 N

Thus, the estimated standard error of p is

Sﬁ = .067
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7.3.3

Crudely, this tells us that the error of p is in the second or first decimal place—that
we are probably not so fortunate as to have an error only in the third decimal place.
In fact, the error was .134 or about 2 x . u

These examples show how, in simple random sampling, we can not only form
estimates of unknown population parameters, but can also gauge the likely size of the
errors of the estimates, by estimating their standard errors from the data in the sample.

We have covered a lot of ground, and the presence of the finite population cor-
rection complicates the expressions we have derived. It is thus useful to summarize
our results in the following table:

Population
Parameter Estimate Variance of Estimate Estimated Variance

Y 1 n 2 _ 6% (N-n 2 _ 52 n
M X=X oz =1 (34) se=45(1-%)

p = sample proportion az—p“—_”)(N_”) SZ—M(I—l)
p p = sample prop » = T a N—1 P a1 N
T T=NX 0% = N?%2 52 = N2s2

X

o? (1 — %) 5%

where s? = - 37" (X, — X)%.

The square roots of the entries in the third column are called standard errors,
and the square roots of the entries in the fourth column are called estimated standard
errors. The former depend on unknown population parameters, so the latter are used
to gauge the accuracy of the parameter estimates. When the population is large relative
to the sample size, the finite population correction can be ignored, simplifying the
preceding expressions.

The Normal Approximation to the Sampling
Distribution of X

We have found the mean and the standard deviation of the sampling distribution of X.
Ideally, we would like to know the sampling distribution, since it would tell us every-
thing we could hope to know about the accuracy of the estimate. Without knowledge
of the population itself, however, we cannot determine the sampling distribution. In
this section, we will use the central limit theorem to deduce an approximation to
the sampling distribution—the normal, or Gaussian, distribution. This approximation
will be used to find probabilistic bounds for the estimation error.

In Section 5.3, we considered a sequence of independent and identically dis-
tributed (i.i.d.) random variables, X, X, ... having the common mean and variance
w and o%. The sample mean of X, X, ..., X, is

— 1
Xn:;;X,'
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This sample mean has the properties

and
2

— o
Var(X,) = —
n

The central limit theorem says that, for a fixed number z,

Yn_u“
P <z)]—> ®(2) asn — 0o

o/n

where @ is the cumulative distribution function of the standard normal distribution.
Using a more compact and suggestive notation, we have

P<X”_“ §z> — D(2)

Ox

n

The context of survey sampling is not exactly like that of the central limit theorem
as stated above—as we have seen, in sampling without replacement, the X; are not
independent of each other, and it makes no sense to have n tend to infinity while N
remains fixed. But other central limit theorems have been proved that are appropriate
to the sampling context. These show that if n is large, but still small relative to N,
then X, the mean of a simple random sample, is approximately normally distributed.

To demonstrate the use of the central limit theorem, we will apply it to approx-
imate P(|X — u| < 8), the probability that the error made in estimating x by X is
less than some constant &

since ®(—z) = 1 — P(z), from the symmetry of the standard normal distribution
about zero.

Let us again consider the population of 393 hospitals. The standard deviation of the
mean of a sample of size n = 64 is, using the finite population correction,

o | n—1
Oy = — —
X yn\ N—-1

589.7
= ——1/1- ﬁ =67.5
8 392

We can use the central limit theorem to approximate the probability that the
sample mean differs from the population mean by more than 100 in absolute value;i.e.,
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EXAMPLE B

EXAMPLE C

P(|X — 1| > 100). First, from the symmetry of the normal distribution,

P(X — u| > 100) = 2P(X — > 100)
and
P(X —p>100=1—-P(X —u < 100)

X—p 100
=1_p< “<_)

ox ox

100
~l—® —
(615)

= .069

Thus the probability that the sample mean differs from the population mean by more
than 100 is approximately .14. In fact, among the 500 samples of size 64 in Example
Ain Section 7.3.1, 82, or 16.4%, differed by more than 100 from the population mean.
Similarly, the central limit theorem approximation gives .026 as the probability of
deviations of more than 150 from the population mean. In the simulation in Example
A in Section 7.3.1, 11 of 500, or 2.2%, differed by more than 150. If we are not too
finicky, the central limit theorem gives us reasonable and useful approximations. M

For a sample of size 50, the standard error of the sample mean number of discharges
is

0‘7278

For the particular sample of size 50 discussed in Example A in Section 7.3.2, we
found X = 938.35, s0 X — u = 123.9. We now calculate an approximation of the
probability of an error this large or larger:

P(X —u| >123.9) =1—P(|X — u| < 123.9)
123.
~1— |20 —39 -1
78
=2—-2d(1.59)
= .11

Thus, we can expect an error this large or larger to occur about 11% of the time. H

In Example C in Section 7.3.2, we found from the sample of size 50 an estimate
p = .52 of the proportion of hospitals that discharged fewer than 1000 patients; in
fact, the actual proportion in the population is .65. Thus, |p — p | = .13. What is the
probability that an estimate will be off by an amount this large or larger?

We have
\/p(l—p)\/ n—1
Ui’: 1—
n N -1

068 x .94 = .064
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We can therefore calculate

Pp—pl>.13)=1-P(p—pl <.13)
O p
~ 21 — ®(2.03)] = .04

We see that the sample was rather “unlucky”—an error this large or larger would
occur only about 4% of the time. [ ]

We can now derive a confidence interval for the population mean, p. A confi-
dence interval for a population parameter, 6, is a random interval, calculated from the
sample, that contains 6 with some specified probability. For example, a 95% confi-
dence interval for p is a random interval that contains p with probability .95; if we
were to take many random samples and form a confidence interval from each one,
about 95% of these intervals would contain . If the coverage probability is 1 — «,
the interval is called a 100(1 — «a)% confidence interval. Confidence intervals are
frequently used in conjunction with point estimates to convey information about the
uncertainty of the estimates.

For 0 < o < 1, let z(x) be that number such that the area under the standard
normal density function to the right of z(«) is « (Figure 7.3). Note that the symmetry
of the standard normal density function about zero implies that z(1 — o) = —z(x).
If Z follows a standard normal distribution, then, by definition of z(«),

P(—z(/2) < Z<z(a/2)=1—«

From the central limit theorem, (X — )/ oy has approximately a standard normal
distribution, so

X—u
P (—z(a/Z) s = z(a/2)> ~1—a

f(2)

FIGURE 7.3 A standard normal density showing « and z().
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Elementary manipulation of the inequalities gives
P(X —z(@/2)ox < u < X + z(e/Qop) ¥ 1 —«

That is, the probability that x lies in the interval X + z(e/2)oy is approximately
1 — «. The interval is thus called a 100(1 — )% confidence interval. It is important
to understand that this interval is random and that the preceding equation states that
the probability that this random interval covers w is 1 — «. In practice, « is assigned a
small value, such as .1, .05, or .01, so that the probability that the interval covers u will
be large. Also, since the population variance is typically not known, sy is substituted
for 0. For large samples, it can be shown that the effect of this substitution is
practically negligible. It is impossible to give a precise answer to the question “How
large is large?” As a rule of thumb, a value of n greater than 25 or 30 is usually
adequate.

To illustrate the concept of a confidence interval, 20 samples each of size n = 25
were drawn from the population of hospital discharges. From each of these 20 samples,
an approximate 95% confidence interval for u, the mean number of discharges, was
computed. These 20 confidence intervals are displayed as vertical lines in Figure 7.4;
the dashed line in the figure is drawn at the true value, © = 814.6. Notice that it so

1200

1000

Number of discharges
800

600

o
(=)
<t

FIGURE 7.4 Vertical lines are 20 approximate 95% confidence intervals for . The
horizontal line is the true value of .
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happened that all the confidence intervals included p; since these are 95% intervals,
on the average 5%, or 1 out of 20, would not include .

The following example illustrates the procedure for calculating confidence
intervals.

A particular area contains 8000 condominium units. In a survey of the occupants, a
simple random sample of size 100 yields the information that the average number of
motor vehicles per unit is 1.6, with a sample standard deviation of .8. The estimated
standard error of X is thus

R n
Sy = —= - —
X un N
.8 100
= 21—
10 8000
= .08

Note that the finite population correction makes almost no difference. Since z(.025) =
1.96, a 95% confidence interval for the population average is X & 1.96s%, or (1.44,
1.76).

An estimate of the total number of motor vehicles is 7 = 8000 x 1.6 = 12,800.
The estimated standard error of T is

st = Nsyx = 640

A 95% confidence interval for the total number of motor vehicles is T =+ 1.96s7, or
(11,546, 14,054).

In the same survey, 12% of the respondents said they planned to sell their condos
within the next year; p = .12 is an estimate of the population proportion p. The
estimated standard error is

oo [ED i IO,
n—1 8000
A 95% confidence interval for p is p 4= 1.96s;, or (.06, .18).

The total number of owners planning to sell is estimated as T = N p = 960. The
estimated standard error of T is s7 = Ns; = 240. A 95% confidence interval for the
number in the population planning to sell is 7 & 1.96s7, or (490, 1430). The proper
interpretation of this interval, (490, 1430), is a little subtle. We cannot state that the
probability is 0.95 and that the number of owners planning to sell is between 490 and
1430, because that number is either in this interval or not. What is true is that 95% of
intervals formed in this way will contain the true number in the long run. This interval
is like one of those shown in Figure 7.4; in the long run, 95% of those intervals will
contain the true number of discharges, but in the figure any particular interval either
does or doesn’t contain the true number. [ |

The width of a confidence interval is determined by the sample size n and the
population standard deviation o. If o is known approximately, perhaps from earlier
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EXAMPLE E

7.4

samples of the population, n can be chosen so as to obtain a confidence interval close
to some desired length. Such analysis is usually an important aspect of planning the
design of a sample survey.

The interval for the total number of owners planning to sell in Example D might be
considered too wide for practical purposes; reducing its width would require a larger
sample size. Suppose that an interval with a half-width of 200 is desired. Neglecting
the finite population correction, the half-width is

p(l—p) 5095

1.96s7 = 1.96N =
n—1 n—1

Setting the last expression equal to 200 and solving for n yields n = 650 as the
necessary sample size. [ |

Let us summarize: The fundamental result of this section is that the sampling
distribution of the sample mean is approximately Gaussian. This approximation can be
used to quantify the error committed in estimating the population mean by the sample
mean, thus giving us a good understanding of the accuracy of estimates produced
by a simple random sample. We next introduced the idea of a confidence interval,
a random interval that contains a population parameter with a specified probability
and thus provides an assessment of the accuracy of the corresponding estimate of that
parameter. We have seen in our examples that the width of the confidence interval is a
multiple of the estimated standard deviation of the estimate; for example, a confidence
interval for u is X &+ ks, where the constant k depends on the coverage probability
of the interval.

Estimation of a Ratio

The foundations of the theory of survey sampling have been laid in the preceding sec-
tions on simple random sampling. This and the next section build on that foundation,
developing some advanced topics in survey sampling.

In this section, we consider the estimation of aratio. Suppose that for each member
of a population, two values, x and y, may be measured. The ratio of interest is

N
Z Vi
i=1

B
=17 _

S x Hox
i=1

Ratios arise frequently in sample surveys; for example, if households are sampled,
the following ratios might be calculated:

 If y is the number of unemployed males aged 20-30 in a household and x is the
number of males aged 20-30 in a household, then 7 is the proportion of unemployed
males aged 20-30.
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» If y is weekly food expenditure and x is number of inhabitants, then r is weekly
food cost per inhabitant.

 If y is the number of motor vehicles and x is the number of inhabitants of driving
age, then r is the number of motor vehicles per inhabitant of driving age.

In a survey of farms, y might be the acres of wheat planted and x the total acreage.
In an inventory audit, y might be the audited value of an item and x the book value.
In this section, we first consider directly the problem of estimating a ratio. Later,
we will use the estimation of a ratio as a technique for estimating . ,. We will produce
anew estimate, the ratio estimate, which we will compare to the ordinary estimate, Y.
Before continuing, we note the elementary but sometimes overlooked fact that

1 < Vi
N2
Suppose that a sample is drawn consisting of the pairs (X;, ¥;); the natural
estimate of r is R = Y /X. We wish to derive expressions for E(R) and Var(R), but
since R is a nonlinear function of the random variables X and Y, we cannot do this
in closed form. We will therefore employ the approximate methods of Section 4.6.
In order to calculate the approximate variance of R, we need to know Var(X),

Var(Y), and Cov(X, Y). The first two quantities we know from Theorem B of Section
7.3.1. For the last quantity, we define the population covariance of x and y to be

N
I
O = g(x,- — (¥ — 1y)

It can then be shown, in a manner entirely analogous to the proof of Theorem B in
Section 7.3.1, that

n N —1

From Example C in Section 4.6, we have the following theorem.

— Oxy n—1
Cov(X,Y)=— 11—

THEOREM A

With simple random sampling, the approximate variance of R = Y /X is

1
Var(R) ~ — (r20§ = o% — 2roﬁ)

1 n—1Y\ 1
= (1— N—l) M—)Zc(rch—i-ayz—Zroxy) [ |

The population correlation coefficient is defined as
p= 2

0,0y

and is used as a measure of the strength of the linear relationship between the x and

y values in the population. It can be shown that —1 < p < 1; large values of p
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indicate a strong positive relationship between x and y, and small values indicate a
strong negative relationship. (See Figure 4.7 for some illustrations of correlation.)
The equation in Theorem A can be expressed in terms of the population correlation
coefficient as follows:

Var(R)%l(l— n—l)l( 262462 = 2r oo)
n N-—-1) u? * Y POy
From this expression, we see that strong correlation of the same sign as r decreases the
variance. We also note that the variance is affected by the size of u,—if u, is small,
the variance is large, essentially because small values of X in the ratio R = Y /X
cause R to fluctuate wildly.

We now consider the approximate expectation of R. From Example C in Section
4.6 and the preceding calculations, we have the following theorem.

THEOREM B
With simple random sampling, the expectation of R is given approximately by
N 1 n—1Y\ 1 3
E(R)~r—|—; I_N—l M—z(rax—paxay) n

From the equation in Theorem B, we see that strong correlation of the same
sign as r decreases the bias and that the bias is large if u, is small. Furthermore,
note that the bias is of the order 1/, so its contribution to the mean squared error is
of the order 1/n%. In comparison, the contribution of the variance is of the order 1/n.
Therefore, for large samples, the bias is negligible compared to the standard error of
the estimate.

For large samples, truncating the Taylor series after the linear term provides a
good approximation, since the deviations X — ux and Y — iy are likely to be small.
To this order of approximation, R is expressed as a linear combination of X and Y,
and an argument based on the central limit theorem can be used to show that R is
approximately normally distributed. Approximate confidence intervals can thus be
formed for » by using the normal distribution.

In order to estimate the standard error of R, we substitute R for r in the formula
of Theorem A. The x and y population variances are estimated by s and sf,. The
population covariance is estimated by

1 n . o
S =—2> X=X -1)
i=1

1 n .
— XY, —nXY
o (sowaw)

(as can be seen by expanding the product), and the population correlation is estimated
by

A_Sxy
p=—
SySy
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The estimated variance of R is thus

1 n—1 1
2 2.2, 2
SR:; (1— N—l) ?(R sy 8, — 2Rsyy)

An approximate 100(1 — )% confidence interval for r is R + z(«/2)sg.

Suppose that 100 people who recently bought houses are surveyed, and the monthly
mortgage payment and gross income of each buyer are determined. Let y denote the
mortgage payment and x the gross income. Suppose that

X =$3100 Y = $868
sy = $250 sy = $1200
p = .85 R = .28

Neglecting the finite population correction, the estimated standard error of R is

'
= — [ —— ) /282 x 1200> + 2502 — 2 x .28 x .85 x 250 x 1200
E=10 (3100) V28 + O O X LI X

= .006

An approximate 95% confidence interval for r is .28 4-(1.96) x (.006), or .28 £.012.
Note that the high correlation between x and y causes the standard error of R to be
small. We can use the observed values for the variances, covariances, and means to
gauge the order of magnitude of the bias by substituting them in place of the population
parameters in the formula of Theorem B. Doing so, and again neglecting the finite
population correction, gives the value .00015 for the bias, which is negligible relative
to sz. Note that the large value of X and the large positive correlation coefficient
cause the bias to be small. |

Ratios may also be used as tools for estimating population means and totals.
To illustrate the concept, we return to the example of hospital discharges. For this
population, the number of beds in each hospital is also known; let us denote the number
of beds in the ith hospital by x; and the number of discharges by y;. Suppose that
all the x; are known, perhaps from an earlier enumeration, before a sample has been
taken to estimate the number of discharges, and that we would like to take advantage
of this information. One way to do this is to form a ratio estimate of 1.,:

Yr = 7”)’ = u,R

where X is the average number of beds and Y is the average number of discharges in
the sample. The idea is fairly simple: We expect x; and y; to be closely related in the
population, since a hospital with a large number of beds should tend to have a large
number of discharges. This is borne out by Figure 7.5, a scatterplot of the number
of discharges versus the number of beds. If X < [y, the sample underestimates the
number of beds and probably the number of discharges as well; multiplying Y by
1,/ X increases Y to Y.
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FIGURE 7.5 Scatterplot of the number of discharges versus the number of beds for
the 393 hospitals.
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FIGURE 7.6 (a) A histogram of the means of 500 simple random samples of size 64
from the population of discharges; (b) a histogram of the values of 500 ratio estimates
of the mean number of discharges from samples of size 64.

To see how this ratio estimate works in practice, it was simulated from 500 sam-
ples of size 64 from the population of hospitals. The histogram of the results is shown
in Figure 7.6 along with the histogram of the means of 500 simple random samples
of size 64. The comparison shows dramatically how effective the ratio estimate is at
reducing variability.
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Two more examples will illustrate the scope of the ratio estimation method.

Suppose that we want to estimate the total number of unemployed males aged 20-30
from a sample of households and that we know t,, the total number of males aged
20-30, from census data. The ratio estimate is

T Y
ZTXT
. X

where Y is the average number of unemployed males aged 20-30 per household in
the sample, and X is the sample average number of males aged 20-30 per house-
hold. [ |

A sample of items in an inventory is taken to estimate the total value of the inventory.
Let Y; be the audited value of the ith sample item, and let X; be its book value. We
assume that t,, the total book value of the inventory, is known, and we estimate the
total audited value by

TR:TX

x\\ ~|
[

We V\_/ill now analyze the observed success of the ratio estimate. Since Yr = uxR,
Var(Y ) = % Var(R). From Theorem A, we thus have the following.

COROLLARY A

The approximate variance of the ratio estimate of 1, is
n—1
N -1

— 1
Var(Yr) ~ — <1 - ) (rzcrx2 + ayz — 2rpaxoy) |
n

Similarly, from Theorem B, we have another corollary.

COROLLARY B

The approximate bias of the ratio estimate of w,, is

E(Yx) o2z g2 ) .
—puy~—(1- — (ro; — po,o
R Hy 7 N — 1 e X P y

When will the ratio estimate Y be better than the ordinary estimate Y ? In the fol-
lowing, the finite population correction is neglected for simplicity. Since the variance
of the ordinary estimate Y is

)

_ o,
Var(Y) = —
n
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EXAMPLE D

the ratio estimate has a smaller variance if

2 2
reo; — 2rpoyo, <0

or (provided r > 0, for example)
2poy > ro,
Letting C, = 0,/1t, and Cy = 0,/14y, this last inequality is equivalent to
1 /C,
772 (C_>

C, and C, are called coefficients of variation and give the standard deviation as a
proportion of the mean. (Coefficients of variation are often more meaningful than
standard deviations. For example, a standard deviation of 10 means one thing if the
true value of the quantity being measured is 100 and something entirely different if
the true value is 10,000.)

In order to assess the accuracy of Y g, Var(Y ) can be estimated from the sample.

COROLLARY C

The variance of Y ; can be estimated by

1 n—1
2 2.2 2
S?R—;<1—N_1)(R sx—i—sy—ZRsxy)

and an approximate 100(1 — «)% confidence interval for p, is g +
Z(%)S;R). ]

For the population of 393 hospitals, we have

wy = 274.8 o, =213.2
wy = 814.6 o, = 589.7
r =296 p =91

Thus,
— 1
Var(Y g) &~ —(2.96% x 213.2> +589.7> —2 x 2.96 x .91 x 213.2 x 589.7)
n

_68,697.4
N n

and
262.1
o= A

YR’\’T
n

Including the finite population correction, the linearized approximation predicts that,

with n = 64,
1 63
= 2(262.1)4/1 — —— =300
o7, = g(262.1) 392
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The actual standard deviation of the 500 sample values displayed in Figure 7.6 is

29.9, which is remarkably close. The mean of the 500 values is 816.2, compared to

the population mean of 814.6; the slight apparent bias is consistent with Corollary B.
In contrast, the standard deviation of ¥ from a simple random sample of size

n=064is

o | n—1

Jn N -1

_589.7 /1 63
T8 329

= 606.3

07:

The comparison of o3 to oy, is consistent with the substantial reduction in variability
accomplished by using a ratio estimate of 1, shown in Figure 7.6.

The following is another way of interpreting this comparison. If a simple random
sample of size n; is taken, the variance of the estimate is Var(Y) = 589.72/ ny. A
ratio estimate from a sample of size n, will have the same variance if

262.1°  589.7°

np np

or

Thus, in this case, we can obtain the same precision from a ratio estimate using a
sample about 80% smaller than the simple random sample. Note that this comparison
neglects the bias of the ratio estimate, which is justifiable in this case because the bias
is quite small. Here is a case in which a biased estimate performs substantially better
than an unbiased estimate, the bias being quite small and the reduction in variance
being quite large. [ ]

Stratified Random Sampling

Introduction and Notation

In stratified random sampling, the population is partitioned into subpopulations, or
strata, which are then independently sampled. The results from the strata are then
combined to estimate population parameters, such as the mean.

Following are some examples that suggest the range of situations in which strat-
ification is natural:

* In auditing financial transactions, the transactions may be grouped into strata on
the basis of their nominal values. For example, high-value, medium-value, and
low-value strata might be formed.

* In samples of human populations, geographical areas often form natural strata.

* Inastudy of records of shipments of household goods by motor carriers, the carriers
were grouped into three strata: large carriers, medium carriers, and small carriers.
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7.5.2

Stratified samples are used for a variety of reasons. We are often interested in
obtaining information about each of a number of natural subpopulations in addition
to information about the population as a whole. The subpopulations might be defined
by geographical areas or age groups. In an industrial application in which the popula-
tion consists of items produced by a manufacturing process, relevant subpopulations
might consist of items produced during different shifts or from different lots of raw
material. The use of a stratified random sample guarantees a prescribed number of
observations from each subpopulation, whereas the use of a simple random sample
can result in underrepresentation of some subpopulations. A second reason for using
stratification is that, as will be shown below, the stratified sample mean can be con-
siderably more precise than the mean of a simple random sample, especially if the
population members within each stratum are relatively homogeneous and if there is
considerable variation between strata.

In the next section, properties of the stratified sample mean are derived. Since
a simple random sample is taken within each stratum, the results will follow easily
from the derivations of earlier sections. The section after that takes up the problem
of how to allocate the total number of observations, n, among the various strata.
Comparisons will be made of the efficiencies of different allocation schemes and
also of the precisions of these allocation schemes relative to that of a simple random
sample of the same total size.

Properties of Stratified Estimates

Suppose there are L strata in all. Let the number of population elements in stratum
1 be denoted by Ny, the number in stratum 2 be N,, etc. The total population size
isN = Ny + N, + ...+ N.. The population mean and variance of the /th stratum
are denoted by 1; and o2. The overall population mean can be expressed in terms of
the u; as follows. Let x;; denote the ith population value in the /th stratum and let
W, = N;/N denote the fraction of the population in the /th stratum. Then

1 L N
L N

| L
_ZN/MZ
N3

L
Z Wiy
=1

Within each stratum, a simple random sample of size n; is taken. The sample
mean in stratum / is denoted by

uw

— 1
X = — X;
1 nliz:l: il

Here X;; denotes the ith sample value in the /th stratum. Note that X, is the mean of
a simple random sample from the population consisting of the /th stratum, so from
Theorem A of Section 7.3.1, E(X;) = p,. By analogy with the preceding relationship
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between the overall population mean and the population means of the various strata,
the obvious estimate of i is

X;

I
M=
==

X,

I
—~ —
I ~
L n

=

B

2

THEOREM A

The stratified estimate, X, of the population mean is unbiased.

Proof

E(X)

L
Z WiE (X))

=1

| L
—ZNIMI
NS

Since we assume that the samples from different strata are independent of one
another and that within each stratum a simple random sample is taken, the variance
of X can be easily calculated.

THEOREM B

The variance of the stratified sample mean is given by

L
_ 1 —1
Var ) =) Wi (n_,> (1 - Z/I, - 1) o

=1

Proof

Since the X, are independent,

L
Var(X,) = Y W2 Var(X;)
=1
From Theorem B of Section 7.3.1, we have
— 1 n; — 1 2
Var(X;)) = — (1 — o;
n; N] —1

Therefore, the desired result follows. |
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EXAMPLE A

If the sampling fractions within all strata are small,

L
_ W2o?
Var(X,) ~ § %
=1 !

We again consider the population of hospitals. As we did in the discussion of ratio
estimates, we assume that the number of beds in each hospital is known but that the
number of discharges is not. We will try to make use of this knowledge by stratifying
the hospitals according to the number of beds. Let stratum A consist of the 98 smallest
hospitals, stratum B of the 98 next larger, stratum C of the 98 next larger, and stratum
D of the 99 largest. The following table shows the results of this stratification of
hospitals by size:

Stratum N, w, n o]
A 98 249 182.9 103.4
B 98 249 526.5 204.8
C 98 249 956.3 243.5
D 99 251 1591.2 419.2

Suppose that we use a sample of total size n and let
n

n _nz_n3_n4_1
so that we have equal sample sizes in each stratum. Then, from Theorem B, neglecting
the finite population corrections and using the numerical values in the preceding table,
we have

— 1 Wio?
Var(X,) = ; p

4
4 2 2
- § :‘/Vlal
n

=1

72,042.6
- n
and 268.4
O'y: = ﬁ
The standard deviation of the mean of a simple random sample is
587.7
oy = ﬁ

Comparing the two standard deviations, we see that a tremendous gain in precision
has resulted from the stratification. The ratio of the variances is .20; thus a stratified
estimate based on a total sample size of n/5 is as precise as a simple random sample
of size n. The reduction in variance due to stratification is comparable to that achieved
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by using a ratio estimate (Example D in Section 7.4). In later parts of this section, we
will look more analytically at why the stratification done here produced such dramatic
improvement. u

Let us next consider the stratified estimate of the population total, 7, = N X,.
From Theorem B, we have the following corollary.

COROLLARY A
The expectation and variance of the stratified estimate of the population total are
E(T) =1

and
Var(T,) = N*Var(X,)

IL,
1 nl—l
= N(—)(1- ?
I=1 l(’”)( Nl_l)al -

In order to estimate the standard errors of X, and T}, the variances of the individual
strata must be separately estimated and substituted into the preceding formulae. The
estimate of o/ is given by

R _
§ X — X))?
nl_li:1( I 1)

2 _
s, =

Var(X) is estimated by
s = Z w? l 1— il 52
X, — "'\ n N, )

The next example illustrates how this variance estimate can be used to find
approximate confidence intervals for © based on Xj.

A sample of size 10 was drawn from each of the four strata of hospitals described in
Example A, yielding the following:

X, = 240.6 st = 6827.6
X, = 507.4 s; = 23,790.7
X; = 865.1 53 =42,573.0
X, =17165  s2=152,099.6
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Therefore, X, = 832.5. The variance of the stratified sample mean is estimated by

e

4
1 i’ll—l
2 2 2
2 — N w1
T 04 ’( N,—I)S’

1282.0

Thus,
sy, =35.8

An approximate 95% confidence interval for the population mean number of dis-
charges is X; &= 1.96s5,, or (762.4, 902.7). -
The total number of discharges is estimated by 7, = 393X, = 327,172. The

standard error of 7 is estimated by sz, = 393sy = 14,069. An approximate
95% confidence interval for the population total is 7y £ 1.96s7,, or (299,596, 354,
748). [ |

7.5.3 Methods of Allocation

In Section 7.5.2, it was shown that, neglecting the finite population correction,

L

Var(X,) = »

=1

2 2
Wio

n

If the resources of a survey allow only a total of n units to be sampled, the question
arises of how to choose ny, ..., n; to minimize Var(X,) subject to the constraint
n+---+n,=n.

For the sake of simplicity, the calculations in this section ignore the finite popu-
lation correction within each stratum. The analysis may be extended to include these
corrections, but at the cost of some additional algebra. More complete results are
contained in Cochran (1977).

THEOREM A
The sample sizes ny, ..., n; that minimize Var(X,) subject to the constraint
ny +---+n;, = n are given by
Wio
m=n—r—
> Wiok
k=1

wherel =1,..., L.
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Proof
We introduce a Lagrange multiplier, and we must then minimize

JL) Wzoz JL
L(ny,...,n,\) = g %—i—k E n—n
I=1 ! I=1

Forl =1, ..., L, we have

L Wio?
—=——+A
E)nl nj

Setting these partial derivatives equal to zero, we have the system of equations

Wio;
n; =
VA
forl =1, ..., L. To determine A, we first sum these equations over /:

1 i
n=-—— Z W[U]
\/X =1

Thus,
I n
A L
</ > Wio
I=1
d
an Wio,
nyp=n i3
> Wy
I=1
which proves the theorem. |

This theorem shows that those strata for which W;o; is large should be sampled
heavily. This makes sense intuitively. If W, is large, the stratum contains a large
fraction of the population; if o; is large, the population values in the stratum are
quite variable, and in order to obtain a good determination of the stratum’s mean, a
relatively large sample size must be used. This optimal allocation scheme is called
Neyman allocation.

Substituting the optimal values of n; as given in Theorem A into the equation for
Var(X,) given in Theorem B in Section 7.5.2 gives us the following corollary.

COROLLARY A

Denoting by X, the stratified estimate using the optimal allocations as given in
Theorem A and neglecting the finite population correction,

(five)

n

Var(ysa) =
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Survey Sampling

For the population of hospitals, the weights for optimal allocation, W;o;/ Y W0y,
are, from the table of Example A of Section 7.5.2,

Stratum

A B C D
Weight .106 210 250 434

Note that, because of its larger standard deviation, stratum D is sampled more than
four times as heavily as stratum A. [ |

The optimal allocations depend on the individual variances of the strata, which
generally will not be known. Furthermore, if a survey measures several attributes
for each population member, it is usually impossible to find an allocation that is
simultaneously optimal for all of those variables. A simple and popular alternative
method of allocation is to use the same sampling fraction in each stratum,

n no nL
N NN
which holds if
N
n=n—=nW,
N

forl =1, ..., L. This method is called proportional allocation. The estimate of the
population mean based on proportional allocation is

since W;/n; = 1/n. This estimate is simply the unweighted mean of the sample
values.

THEOREM B

With stratified sampling based on proportional allocation, ignoring the finite
population correction,

_ 1 &
Var(X,,) = — § Wio?
n
=1
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Proof
From Theorem B of Section 7.5.2, we have

L
Var(X,,) = Z W} Var(X))

I=1
L

2012

= E w2 L

I=1 L

Using n; = nW,, the result follows. [ |

We now compare Var(XW) and Var(X,,) in order to discover the circumstances
under which optimal allocation is substantially better than proportional allocation.

THEOREM C

With stratified random sampling, the difference between the variance of the
estimate of the population mean based on proportional allocation and the variance
of that estimate based on optimal allocation is, ignoring the finite population
correction,

_ _ 1 <&
Var(Xyp) = Var(X,) = = > Wi(or = 6)?

=1
where

1L,
7= W
=1
Proof

L L 2
_ _ 1
Var(X,,) — Var(X,,) = — § W0} — <§ Wm,)
n
=1 =1

The term within the large brackets equals Zle W,(0; — &), which may be
verified by expanding the square and collecting terms. ™

According to Theorem C, if the variances of the strata are all the same, propor-
tional allocation yields the same results as optimal allocation. The more variable these
variances are, the better it is to use optimal allocation.
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EXAMPLE B Letus calculate how much better optimal allocation is than proportional allocation
for the population of hospitals. From Theorem C and Corollary A, we have

— — 1
Var(X,y) = Var(X,) + > Wi(or = 6)?

Therefore,
1
_ —\2
Var(Xsp) _ ; Z WI(OI B G)
Var(Ym) N Var(Yso)
4 > Wi(o — &)
O~ Wioy)?
=1+.218

Thus, under proportional allocation, the variance of the mean is about 20% larger
than it is under optimal allocation. [ |

We can also compare the variance under simple random sampling with the vari-
ance under proportional allocation. The variance under simple random sampling is,
neglecting the finite population correction,

_ 0'2
Var(X) = —
n

In order to compare this equation with that for the variance under proportional allo-
cation, we need a relationship between the overall population variance, o2, and the
strata variances, o/>. The overall population variance may be expressed as

L N;

o’ = % DO =)’

=1 i=1
Also,
(e — 1) = [ — ) + (i — w17
= (xir — ) + 200 — w) (o — ) + (g — )’

When both sides of this last equation are summed over /, the middle term on the
right-hand side becomes zero since N;u; = ZIN=I1 X;;, SO we have

N; ni
D G —w? =Y i — ) + Ni(w — )’
i=1 i=1

= Nioy + Ni(uy — pn)*

Dividing both sides by N and summing over /, we have

L L
o= Z W0} + Z Wi (i — p)?
=1 =1



EXAMPLE C

7.5 Stratified Random Sampling 237

Substituting this expression for o? into Var(X) = o2/n and using the formula for
Var(X,,) given in Theorem B completes a proof of the following theorem.

THEOREM D

The difference between the variance of the mean of a simple random sample and
the variance of the mean of a stratified random sample based on proportional
allocation is, neglecting the finite population correction,
1 L
Var(X) — Var(Xp) = — > Wi — )’ L

=1

Thus, stratified random sampling with proportional allocation always gives a
smaller variance than does simple random sampling, providing that the finite popu-
lation correction is ignored. Comparing the equations for the variances under simple
random sampling, proportional allocation, and optimal allocation, we see that strat-
ification with proportional allocation is better than simple random sampling if the
strata means are quite variable and that stratification with optimal allocation is even
better than stratification with proportional allocation if the strata standard deviations
are variable.

We calculate the improvement that would result from using stratification with propor-
tional allocation rather than simple random sampling for the population of hospitals.
From Theorems B and D, we have

Var(ysrs) Z Wl(:ul - /7“)2
Var(X ) > Wo;
=1+4+3.83

Asis frequently the case, the gain from using stratification with proportional allocation
rather than simple random sampling is much greater than the gain from using optimal
allocation rather than proportional allocation. Furthermore, proportional allocation
requires knowledge only of the sizes of the strata, whereas optimal allocation requires
knowledge of the standard deviations of the strata, and such knowledge is usually
unavailable. [ |

Typically, stratified random sampling can result in substantial increases in preci-
sion for populations containing values that vary greatly in size. For example, a pop-
ulation of transactions, a sample of which is to be audited for errors, might contain
transactions in the hundreds of thousands of dollars and transactions in the hundreds
of dollars. If such a population were divided into several strata according to the dollar
amounts of the transactions, there might well be considerable variation in the mean
transaction errors between the strata, since there may be rather large errors on large



238

Chapter 7 Survey Sampling

7.6

transactions and small errors on small transactions. The variability of the errors might
also be larger in the former strata as well.

We have not addressed the question of how many strata to form and how to
define the strata. In order to construct the optimal number of strata, the population
values themselves, which are of course unknown, would have to be used. Stratification
must therefore be done on the basis of some related variable that is known (such as
transaction amount in the preceding paragraph) or on the results of earlier samples.
In practice, it usually turns out that such relationships are not strong enough to make
it worthwhile constructing more than a few strata.

Concluding Remarks

This chapter introduced survey sampling. It first covered the most elementary method
of probability sampling—simple random sampling. The theory of this method under-
lies the theory of more complex sampling techniques. Stratified sampling was also in-
troduced and shown to increase the precision of estimates substantially in many cases.

Several concepts and techniques introduced here recur throughout statistics: the
concept of a random estimate of a population parameter, such as the population mean;
bias; the standard error of an estimate; confidence intervals based on the central limit
theorem; and linearization, or propagation of error.

The theory and technique of survey sampling go far beyond the material in
this introduction. One method that deserves mention because of its widespread use
is systematic sampling. The population members are given in a list. If, say, a 10%
sample is desired, every tenth member of the listis sampled starting from some random
point among the first ten. If the list is in totally random order, this method is similar
to simple random sampling. If, however, there is some correlation or relationship
between successive members, the method is more similar to stratified sampling. The
clear danger of this method is that there may be some periodic structure in the list, in
which case bias can ensue.

Another commonly used method is cluster sampling. In sampling residential
households, a survey might choose blocks randomly and then either sample every
dwelling on each chosen block or further subsample the dwellings. Because one
would expect dwellings within a single block to be relatively homogeneous, this
method is typically less precise than a simple random sample of the same size.

We have developed a mathematical model for survey sampling and have deduced
consequences of that model, including probabilistic error bounds for the estimates.
As is always the case, reality never quite matches the mathematical model. The
basic assumptions of the model are (1) that every population member appears in
the sample with a specified probability and (2) that an exact measurement or response
is obtained from every sample member. In practice, neither assumption will hold pre-
cisely. Converse and Traugott (1986) provide an interesting discussion of the practical
difficulties of polls and surveys and consequences for the variability of the estimates.

The first assumption may fail because of the difficulty of obtaining an ex-
act enumeration of the population or because of imprecision in its definition. For
example, political surveys can be putatively based on all adults, all registered voters,
or all “likely” voters. However, the most serious problem with respect to the first
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assumption is that of nonresponse. Response levels of only 60% to 70% are common
in surveys of human populations. The possibility of substantial bias clearly arises if
there is a relationship of potential answers to survey questions to the propensity to
respond to those questions. For example, adults living in families are easier to contact
by a telephone survey than those living alone, and the opinions of these two groups
may well differ on certain issues. It is important to realize that the standard errors
of estimates that we have developed earlier in this chapter account only for random
variability in sample composition, not for systematic biases.

The Literary Digest poll of 1936, which predicted a 57% to 43% victory for
Republican Alfred Landon over incumbent president Franklin Roosevelt, is one of
the most famous of flawed surveys. Questionnaires were mailed to about 10 million
voters, who were selected from lists such as telephone books and club memberships,
and approximately 2.4 million of the questionnaires were returned. There were two
intrinsic problems: (1) nonresponse—those who did not respond may have voted dif-
ferently from those who did—and (2) selection bias—even if all 10 million voters
had responded, they would not have constituted a random sample; those in lower
socioeconomic classes (who were more likely to vote for Roosevelt) were less likely
to have telephone service or belong to clubs and thus less likely to be included in
the sample than were wealthier voters. The assumption that an exact measurement is
obtained from every member of the sample may also be in error. In surveys conducted
by interviewers, the interviewer’s approach and personality may affect the response.
In surveys that use questionnaires, the wording of the questions and the context within
which they are lodged can have an effect. An interesting example is a poll conducted
by Stanley Presser, (New Yorker, Oct 18, 2004). Half of the sample was asked, “Do
you think the United States should allow public speeches against democracy?” The
other half was asked, “Do you think the United States should forbid public speeches
against democracy?”” 56% said no to the first question, and 39% said yes to the second.
The interesting paper by Hansen in Tanur et al. (1972) reports on efforts of the U.S.
Bureau of the Census to investigate these sorts of problems.

Problems

1. Consider a population consisting of five values—I1, 2, 2, 4, and 8. Find the
population mean and variance. Calculate the sampling distribution of the mean
of a sample of size 2 by generating all possible such samples. From them, find
the mean and variance of the sampling distribution, and compare the results to
Theorems A and B in Section 7.3.1.

2. Suppose that a sample of size n = 2 is drawn from the population of the preceding
problem and that the proportion of the sample values that are greater than 3 is
recorded. Find the sampling distribution of this statistic by listing all possible
such samples. Find the mean and variance of the sampling distribution.

3. Which of the following is a random variable?

a. The population mean
b. The population size, N
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10.

11.

The sample size, n

The sample mean

The variance of the sample mean

The largest value in the sample

The population variance

. The estimated variance of the sample mean

TR ome 0

. Two populations are surveyed with simple random samples. A sample of size n;

is used for population I, which has a population standard deviation o ; a sample of
size n, = 2n; is used for population II, which has a population standard deviation
0, = 20,. Ignoring finite population corrections, in which of the two samples
would you expect the estimate of the population mean to be more accurate?

. How would you respond to a friend who asks you, “How can we say that the

sample mean is a random variable when it is just a number, like the population
mean? For example, in Example A of Section 7.3.2, a simple random sam-
ple of size 50 produced ¥ = 938.5; how can the number 938.5 be a random
variable?”

. Suppose that two populations have equal population variances but are of different

sizes: Ny = 100,000 and N, = 10,000,000. Compare the variances of the sample
means for a sample of size n = 25. Is it substantially easier to estimate the mean
of the smaller population?

. Suppose that a simple random sample is used to estimate the proportion of families

in acertain area that are living below the poverty level. If this proportion is roughly
.15, what sample size is necessary so that the standard error of the estimate is .02?

. A sample of size n = 100 is taken from a population that has a proportion

p=1/5.

a. Find 6 such that P(|p — p| > 6) = 0.025.

b. If, in the sample, p = 0.25, will the 95% confidence interval for p contain
the true value of p?

. In a simple random sample of 1,500 voters, 55% said they planned to vote for a

particular proposition, and 45% said they planned to vote against it. The estimated
margin of victory for the proposition is thus 10%. What is the standard error of
this estimated margin? What is an approximate 95% confidence interval for the
margin?

True or false (and state why):
If a sample from a population is large, a histogram of the values in the sample
will be approximately normal, even if the population is not normal.

Consider a population of size four, the members of which have values xy, x;, x3, x4.

a. If simple random sampling were used, how many samples of size two are
there?

b. Suppose that rather than simple random sampling, the following sampling
scheme is used. The possible samples of size two are

{x1, x2}, {x2, x3}, {x3, x4}, {x1, x4}
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and the sampling is done in such a way that each of these four possible samples
is equally likely. Is the sample mean unbiased?

Consider simple random sampling with replacement.
a. Show that

| -
st = E X; — X)*
i=1

n—1F¢%
is an unbiased estimate of o2.
. Is s an unbiased estimate of o ?
. Show that n~'s? is an unbiased estimate of a%.

. Show that n~! N?s? is an unbiased estimate of o 2.
. Show that p(1 — p)/(n — 1) is an unbiased estimate of 05.

o 0 T

Suppose that the total number of discharges, t, in Example A of Section 7.2 is
estimated from a simple random sample of size 50. Denoting the estimate by 7',
use the central limit theorem to sketch the approximate probability density of the
error T — 7.

The proportion of hospitals in Example A of Section 7.2 that had fewer than 1000
discharges is p = .654. Suppose that the total number of hospitals having fewer
than 1000 discharges is estimated from a simple random sample of size 25. Use
the central limit theorem to sketch the approximate sampling distribution of the
estimate.

Consider estimating the mean of the population of hospital discharges (Exam-
ple A of Section 7.2) from a simple random sample of size n. Use the normal
approximation to the distribution of X in answering the following:

a. Sketch P(]X — | > 200) as a function of n for 20 < n < 100.
b. For n = 20, 40, and 80, find A such that P(|X — u| > A) ~ .10. Similarly,
find A such that P(|X — | > A) =~ .50.

True or false?

a. The center of a 95% confidence interval for the population mean is a random
variable.

b. A 95% confidence interval for p contains the sample mean with probability
95.

c. A 95% confidence interval contains 95% of the population.

d. Out of one hundred 95% confidence intervals for w, 95 will contain p.

A 90% confidence interval for the average number of children per household
based on a simple random sample is found to be (.7, 2.1). Can we conclude that
90% of households have between .7 and 2.1 children?

From independent surveys of two populations, 90% confidence intervals for the
population means are constructed. What is the probability that neither interval
contains the respective population mean? That both do?

This problem introduces the concept of a one-sided confidence interval. Using
the central limit theorem, how should the constant £ be chosen so that the interval
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20.

21.

22,

23.

24.

25.

(=00, X + ksy) is a 90% confidence interval for u—i.e., so that P(u < X +
ksg) = .97 This is called a one-sided confidence interval. How should k be
chosen so that (X — ksy, 00) is 95% one-sided confidence interval?

In Example D of Section 7.3.3, a 95% confidence interval for i was found to be
(1.44, 1.76). Because u is some fixed number, it either lies in this interval or it
doesn’t, so it doesn’t make any sense to claim that P(1.44 < u < 1.76) = .95.
What do we mean, then, by saying this is a “95% confidence interval?”

In order to halve the width of a 95% confidence interval for a mean, by what factor
should the sample size be increased? Ignore the finite population correction.

An investigator quantifies her uncertainty about the estimate of a population mean
by reporting X + sy. What size confidence interval is this?

a. Show that the standard error of an estimated proportion is largest when p =
1/2.
b. Use this result and Corollary B of Section 7.3.2 to conclude that the

quantity
1 N—n
2\ Nn—1)

is a conservative estimate of the standard error of p no matter what the value
of p may be.
c¢. Use the central limit theorem to conclude that the interval
N —n
N@n—1)

~

p=x

contains p with probability at least .95.

For arandom sample of size n from a population of size N, consider the following
as an estimate of pu:

Y(,‘ = i CiXi
i=1

where the ¢; are fixed numbers and X, ..., X, is the sample.

a. Find a condition on the ¢; such that the estimate is unbiased.
b. Show that the choice of ¢; that minimizes the variances of the estimate subject
to this conditionis ¢; = 1/n, wherei =1, ..., n.

Here is an alternative proof of Lemma B in Section 7.3.1. Consider a random
permutation Y1, Vs, ..., Yy of x1, X2, . .., xy. Argue that the joint distribution of
any subcollection, Y; , ..., Y; , of the Y; is the same as that of a simple random
sample, Xy, ..., X,. In particular,

Var(Y;) = Var(X;) = o2
and

Cov(Y;, Y)) = Cov(Xy, X)) =y
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ifi #jandk #1/.Since Y, +Y,+---+ Yy =7,
N
Var (Z Y,-) =0
i=1

(Why?) Express Var(ZlN=l Y;) in terms of ¢ and the unknown covariance, y .
Solve for y, and conclude that

fori # j.
This is another proof of Lemma B in Section 7.3.1. Let U; be a random vari-

able with U; =1 if the ith population member is in the sample and equal to 0
otherwise.

a. Show that the sample mean X=n" Z,N:1 U;x;.

b. Show that P(U; = 1) = n/N.Find E (U;), using the fact that U; is a Bernoulli
random variable.

c¢. What is the variance of the Bernoulli random variable U;?

d. Noting that U; U, is a Bernoulli random variable, find E(U;U;), i # j. (Be
careful to take into account that the sample is drawn without replacement.)

e. Find Cov(U;, Uj),i # j.

f. Using the representation of X above, find Var(X).

Suppose that the population size N is not known, but it is known that n < N.
Show that the following procedure will generate a simple random sample of
size n. Imagine that the population is arranged in a long list that you can read
sequentially.

a. Let the sample initially consist of the the first n elements in the list.
b. Fork = 1,2, ..., as long as the end of the list has not been encountered:

i. Read the (n + k)-th element in the list.
ii. Place it in the sample with probability n/(n + k) and, if it is placed in the
sample, randomly drop one of the exisiting sample members.

In surveys, it is difficult to obtain accurate answers to sensitive questions such as
“Have you ever used heroin?” or “Have you ever cheated on an exam?”” Warner
(1965) introduced the method of randomized response to deal with such sit-
uations. A respondent spins an arrow on a wheel or draws a ball from an urn
containing balls of two colors to determine which of two statements to respond
to: (1) “I have characteristic A,” or (2) “I do not have characteristic A.” The inter-
viewer does not know which statement is being responded to but merely records
a yes or a no. The hope is that an interviewee is more likely to answer truthfully
if he or she realizes that the interviewer does not know which statement is being
responded to. Let R be the proportion of a sample answering Yes. Let p be the
probability that statement 1 is responded to (p is known from the structure of
the randomizing device), and let ¢ be the proportion of the population that has
characteristic A. Let r be the probability that a respondent answers Yes.

a. Showthatr = 2p—1)g+(1—p). [Hint: P(yes) = P(yes given question 1) x

P(question 1) 4+ P(yes given question 2) x P(question 2).]
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30.

31.

32.

33.

34.

b. If r were known, how could ¢ be determined?

¢. Show that E(R) = r, and propose an estimate, Q, for g. Show that the estimate
is unbiased.

d. Ignoring the finite population correction, show that

1—
Var(R) — u
n
where n is the sample size.

e. Find an expression for Var(Q).

A variation of the method described in Problem 28 has been proposed. Instead
of responding to statement 2, the respondent answers an unrelated question for
which the probability of a “yes” response is known, for example, “Were you born
in June?”

a. Propose an estimate of ¢ for this method.
b. Show that the estimate is unbiased.
¢. Obtain an expression for the variance of the estimate.

Compare the accuracies of the methods of Problems 28 and 29 by comparing their
standard deviations. You may do this by substituting some plausible numerical
values for p and g.

Referring to Example D in Section 7.3.3, how large should the sample be in order
that the 95% confidence interval for the total number of owners planning to sell
will have a width of 5007

Referring again to Example D in Section 7.3.3, suppose that a survey is done of
another condominium project of 12,000 units. The sample size is 200, and the
proportion planning to sell in this sample is .18.

a. What is the standard error of this estimate? Give a 90% confidence interval.

b. Suppose we use the notation p; = .12 and p, = .18 to refer to the proportions
in the two samples. Let d = D1 — p» be an estimate of the difference, d, of
the two population proportions p; and p,. Using the fact that p; and p, are
independent random variables, find expressions for the variance and standard
error of d.

c. Because p; and p, are approximately normally distributed, so is d. Use this
fact to construct 99%, 95%, and 90% confidence intervals for d. Is there clear
evidence that p; is really different from p,?

Two populations are independently surveyed using simple random samples of
size n, and two proportions, p; and p,, are estimated. It is expected that both
population proportions are close to .5. What should the sample size be so that the
standard error of the difference, p; — p,, will be less than .02?

In a survey of a very large population, the incidences of two health problems are
to be estimated from the same sample. It is expected that the first problem will
affect about 3% of the population and the second about 40%. Ignore the finite
population correction in answering the following questions.
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a. How large should the sample be in order for the standard errors of both esti-
mates to be less than .01? What are the actual standard errors for this sample
size?

b. Suppose that instead of imposing the same limit on both standard errors, the
investigator wants the standard error to be less than 10% of the true value in
each case. What should the sample size be?

A simple random sample of a population of size 2000 yields the following
25 values:

104 109 111 109 87
86 80 119 88 122
91 103 99 108 96

104 98 98 83 107
79 87 94 92 97

a. Calculate an unbiased estimate of the population mean. B
b. Calculate unbiased estimates of the population variance and Var(X).
c. Give approximate 95% confidence intervals for the population mean and total.

S .2 . . .
With simple random sampling, is X an unbiased estimate of 1>? If not, what is
the bias?

Two surveys were independently conducted to estimate a population mean, ju.
Denote the estimates and their standard errors by X and X and oy, and oy, .
Assume that X; and X, are unbiased. For some « and 8, the two estimates can
be combined to give a better estimator:

X =0[Y1 +,3Y2

a. Find the conditions on « and S that make the combined estimate unbiased.
b. What choice of o and f minimizes the variances, subject to the condition of
unbiasedness?

1 n
Let Xy, ..., X, be a simple random sample. Show that — Z X? is an unbiased
n

N
1
: 3
estimate of m g 1 X;.
i=

i=1

Suppose that of a population of N items, k are defective in some way. For exam-
ple, the items might be documents, a small proportion of which are fraudulent.
How large should a sample be so that with a specified probability it will contain
at least one of the defective items? For example, if N = 10,000, k = 50, and
p = .95, what should the sample size be? Such calculations are useful in planning
sample sizes for acceptance sampling.

This problem presents an algorithm for drawing a simple random sample from a
population in a sequential manner. The members of the population are considered
for inclusion in the sample one at a time in some prespecified order (for example,
the order in which they are listed). The ith member of the population is included
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in the sample with probability

n—n;
N—-i+1

where n; is the number of population members already in the sample before the
ith member is examined. Show that the sample selected in this way is in fact
a simple random sample; that is, show that every possible sample occurs with
probability

1
(N
(%)
In accounting and auditing, the following sampling method is sometimes used to
estimate a population total. In estimating the value of an inventory, suppose that
a book value exists for each item and is readily accessible. For each item in the
sample, the difference D, audited value minus book value, is determined. The

inventory value is estimated by the sum of the book values of the population and
N D, where N is the population size.

a. Show that the estimate is unbiased.

b. Find an expression for the variance of the estimate.

c. Compare the expression obtained in part (b) to the variance of the usual es-
timate, which is the product of N and the average audited value. Under what
circumstances would the proposed method be more accurate?

d. How could a ratio estimate be employed in this situation? Would there be any
advantage or disadvantage to using a ratio estimate rather than the proposed
method?

Show that the population correlation coefficient is less than or equal to 1 in
absolute value.

Suppose that for Example D in Section 7.3.3, the average number of occupants
per condominium unit in the sample is 2.2 with a sample standard deviation of
.7 and the sample correlation coefficient between the number of occupants and
the number of motor vehicles is .85. Estimate the population ratio of the number
of motor vehicles per occupant and its standard error. Find an approximate 95%
confidence interval for the estimate.

Show that

Var(Y g) C, [C,
Var(Y) C,

Sketch the graph of this ratio as a function of C, /C,.

In the population of hospitals, the correlation of the number of beds and the num-
ber of discharges is p = .91 (Example D of Section 7.4). To see how Var(Y z)
would be different if the correlation were different, plot Var(Yg) for n = 64 as
a function of p for —1 < p < 1.
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Use the central limit theorem to sketch the approximate sampling distribution
of Y for n = 64 for the population of hospitals. Compare to the approximate
sampling distribution of Y.

For the population of hospitals and a sample size of n = 64, find the approxi-
mate bias of Yz by applying Corollary B of Section 7.4 and compare it to the
approximate standard deviation of the estimate. Repeat for n = 128.

A simple random sample of 100 households located in a city recorded the number
of people living in the household, X, and the weekly expenditure for food, Y. It
is known that there are 100,000 households in the city. In the sample

in =320

ZY,. = 10,000

> X} =1250
> ¥? = 1,100,000
> X:Y; = 36,000

Neglect the finite population correction in answering the following.

a. Estimate the ratio r = py/ty.

b. Form an approximate 95% confidence interval for 1ty /ty.

c¢. Using only the data on Y estimate the total weekly food expenditure, 7, for
households in the city and form a 90% confidence interval.

In a wildlife survey, an area of desert land was divided into 1000 squares, or
“quadrats,” a simple random sample of 50 of which were surveyed. In each sur-
veyed quadrat, the number of birds, Y, and the area covered by vegetation, X,
were determined. It was found that

ZX,- = 3000
Zyi =150

Z X2 = 225,000

> ¥ =650
Zx,-n = 11,000

a. Estimate the ratio of the average number of birds per quadrat to the average
vegetation cover per quadrat.

b. Estimate the standard error of your estimate and find an approximate 90%
confidence interval for the population average.

c. Estimate the total number of birds and find an approximate 95% confidence
interval for the population total.

d. Suppose that from an aerial survey, the total area covered by vegetation could
easily be determined. How could this information be used to provide another
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estimate of the number of birds? Would you expect this estimate to be better
than or worse than that found in part (c)?

Hartley and Ross (1954) derived the following exact bound on the relative size
of the bias and standard error of a ratio estimate:

|E(R)—r|<§_0x 1 1_n—l
- N —1

OR Mox My \ 1

a. Derive this bound from the relation
_ Y — Y _
X X

b. Apply the bound to Problem 43 using sample estimates in place of the given
population parameters.

This problem introduces a technique called the “jackknife,” originally proposed
by Quenouille (1956) for reducing bias. Many nonlinear estimates, including the
ratio estimator, have the property that

5 by b
EQ)y=0+—+—=+---
n n

where 6 is an estimate of 6. The jackknife forms an estimate 6,, which has a
leading bias term of the order n~2 rather than n~'. Thus, for sufficiently large
n, the bias of , is substantially smaller than that of #. The technique involves
splitting the sample into several subsamples, computing the estimate for each
subsample, and then combining the several estimates. The sample is split into p
groups of size m, where n = mp. For j = 1, ..., p, the estimate 0 ; is calculated
from the m(p — 1) observations left after the jth group has been deleted. From
the preceding expression,

b by

EOD =0 =0 T - T

Now, p “pseudovalues” are defined:
Vi=pb—(p- 18
The jackknife estimate, 6, is defined as the average of the pseudovalues:

14
DV
j=I

b, =

<=

Show that the bias of &; is of the order n~2.

A population consists of three strata with Ny = N, = 1000 and N3 = 500.
A stratified random sample with 10 observations in each stratum yields the
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following data:

Stratum1 94 99 106 106 101 102 122 104 97 97
Stratum2 183 183 179 211 178 179 192 192 201 177
Stratum 3 343 302 286 317 289 284 357 288 314 276

Estimate the population mean and total and give a 90% confidence interval.

The following table (Cochran 1977) shows the stratification of all farms in a
county by farm size and the mean and standard deviation of the number of acres
of corn in each stratum.

Farm Size N, h o)

0-40 394 5.4 8.3
41-80 461 16.3 13.3
81-120 391 24.3 15.1
121-160 334 34.5 19.8
161-200 169 42.1 24.5
201-240 113 50.1 26.0
241 + 148 63.8 35.2

. For a sample size of 100 farms, compute the sample sizes from each stratum

for proportional and optimal allocation, and compare them.

. Calculate the variances of the sample mean for each allocation and compare

them to each other and to the variance of an estimate formed from simple
random sampling.

. What are the population mean and variance? o
. Suppose that ten farms are sampled per stratum. What is Var(X;)? How large

a simple random sample would have to be taken to attain the same variance?
Ignore the finite population correction.

. Repeat part (d) using proportional allocation of the 70 samples.

. Suppose that the cost of a survey is C = Cy + C;n, where Cy is a startup

cost and C; is the cost per observation. For a given cost C, find the al-
location ny,...,ny to L strata that is optimal in the sense that it mini-
mizes the variance of the estimate of the population mean subject to the cost
constraint.

. Suppose that the cost of an observation varies from stratum to stratum—in

some strata the observations might be relatively cheap and in others relatively
expensive. The cost of a survey with an allocation ny, ..., ny is

L
C:CO+ZC11’U

=1

For a fixed total cost C, what choice of ny, - - -, n;, minimizes the variance?

. Assuming that the cost function is as given in part (b), for a fixed variance,

find n; to minimize cost.
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The designer of a sample survey stratifies a population into two strata, H and L.
H contains 100,000 people, and L contains 500,000. He decides to allocate 100
samples to stratum H and 200 to stratum L, taking a simple random sample in
each stratum.

a. How should the designer estimate the population mean?

b. Suppose that the population standard deviation in stratum H is 20 and the
standard deviation in stratum L is 10. What will be the standard error of his
estimate?

¢. Would it be better to allocate 200 samples to stratum H and 100 to stratum L?

d. Would it be better to use proportional allocation?

How might stratification be used in each of the following sampling problems?

a. A survey of household expenditures in a city.

b. A survey to examine the lead concentration in the soil in a large plot of land.

¢. Asurvey to estimate the number of people who use elevators in a large building
with a single bank of elevators.

d. A survey of programs on a television station, taken to estimate the proportion
of time taken up by advertising on Monday through Friday from 6 P.M. until
10P.M. Assume that 52 weeks of recorded broadcasts are available for analysis.

Consider stratifying the population of Problem 1 into two strata: (1, 2, 2) and (4,
8). Assuming that one observation is taken from each stratum, find the sampling
distribution of the estimate of the population mean and the mean and standard
deviation of the sampling distribution. Compare to Theorems A and B in Section
7.5.2 and the results of Problem 1.

(Computer Exercise) Construct a population consisting of the integers from 1 to
100. Simulate the sampling distribution of the sample mean of a sample of size
12 by drawing 100 samples of size 12 and making a histogram of the results.

(Computer Exercise) Continuing with Problem 58, divide the population into
two strata of equal size, allocate six observations per stratum, and simulate
the distribution of the stratified estimate of the population mean. Do the same
thing with four strata. Compare the results to each other and to the results of
Problem 58.

A population consists of two strata, H and L, of sizes 100,000 and 500,000 and
standard deviations 20 and 12, respectively. A stratified sample of size 100 is to
be taken.

a. Find the optimal allocation for estimating the population mean.

b. Find the optimal allocation for estimating the difference of the means of the
Strata, uy — .

The value of a population mean increases linearly through time: u(t) = o + Bt

while the variance remains constant. Independent simple random samples of size
n are taken at times ¢ = 1, 2, and 3.

a. Find conditions on w;, w,, and ws such that

~

ﬂ = U)IY] + wZ72 + w3Y3
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is an unbiased estimate of the rate of change, . Here X; denotes the sample
mean at time ¢;.

b. What values of the w; minimize the variance subject to the constraint that the
estimate is unbiased?

In Example B of Section 7.5.2, the standard error of X, was estimated to | be
sy, = 35.8. How good is this estimate—what is the actual standard error of X?

(Open-ended) Monte Carlo evaluation of an integral was introduced in Example
A of Section 5.2. Refer to that example for the following notation. Try to interpret
that method from the point of view of survey sampling by considering an “infinite
population” of numbers in the interval [0, 1], each population member x having
a value f(x). Interpret 1(f) as the mean of a simple random sample. What is
the standard error of ] ( f)? How could it be estimated? How could a confidence
interval for 7(f) be formed? Do you think that anything could be gained by
stratifying the “population?” For example, the strata could be the intervals [0, .5)
and [.5, 1]. You might find it helpful to consider some examples.

The value of an inventory is to be estimated by sampling. The items are stratified
by book value in the following way:

Stratum N, I o)

$1000 + 70 3000 1250
$200-1000 500 500 100
$1-200 10,000 90 30

a. What should the relative sampling fraction in each stratum be for proportional
and for optimal allocation? Ignore the finite population correction.

b. How do the variances under each type of allocation compare to each other and
to the variance under simple random sampling?

The disk file cancer contains values for breast cancer mortality from 1950 to
1960 (y) and the adult white female population in 1960 (x) for 301 counties in
North Carolina, South Carolina, and Georgia.

a. Make a histogram of the population values for cancer mortality.

b. What are the population mean and total cancer mortality? What are the pop-
ulation variance and standard deviation?

c. Simulate the sampling distribution of the mean of a sample of 25 observations
of cancer mortality.

d. Draw a simple random sample of size 25 and use it to estimate the mean and
total cancer mortality.

e. Estimate the population variance and standard deviation from the sample of
part (d).

f. Form 95% confidence intervals for the population mean and total from the
sample of part (d). Do the intervals cover the population values?

g. Repeat parts (d) through (f) for a sample of size 100.

h. Suppose that the size of the total population of each county is known and that
this information is used to improve the cancer mortality estimates by forming
a ratio estimator. Do you think this will be effective? Why or why not?
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66.

67.

Simulate the sampling distribution of ratio estimators of mean cancer mortal-
ity based on a simple random sample of size 25. Compare this result to that
of part (c).

. Draw a simple random sample of size 25 and estimate the population mean and

total cancer mortality by calculating ratio estimates. How do these estimates
compare to those formed in the usual way in part (d) from the same data?
Form confidence intervals about the estimates obtained in part (j).

Stratify the counties into four strata by population size. Randomly sample six
observations from each stratum and form estimates of the population mean
and total mortality.

Stratify the counties into four strata by population size. What are the sam-
pling fractions for proportional allocation and optimal allocation? Compare
the variances of the estimates of the population mean obtained using simple
random sampling, proportional allocation, and optimal allocation.

. How much better than those in part (m) will the estimates of the population

mean be if 8, 16, 32, or 64 strata are used instead?

A photograph of a large crowd on a beach is taken from a helicopter. The photo
is of such high resolution that when sections are magnified, individual people
can be identified, but to count the entire crowd in this way would be very time-
consuming. Devise a plan to estimate the number of people on the beach by using
a sampling procedure.

The data set families contains information about 43,886 families living in
the city of Cyberville. The city has four regions: the Northern region has 10,149
families, the Eastern region has 10,390 families, the Southern region has 13,457
families, and the Western region has 9,890. For each family, the following infor-
mation is recorded:

1.

A W

Family type

1: Husband-wife family
2: Male-head family

3: Female-head family

. Number of persons in family
. Number of children in family
. Family income

. Region

1: North
2: East
3: South
4: West

. Education level of head of household

31: Less than 1st grade

32: 1st, 2nd, 3rd, or 4th grade
33: 5th or 6th grade

34: 7th or 8th grade

35: 9th grade

36: 10th grade

37: 11th grade



38:
39:
40:
41:
42:
43:
44.
45:
46:
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12th grade, no diploma

High school graduate, high school diploma, or equivalent

Some college but no degree

Associate degree in college (occupation/vocation program)
Associate degree in college (academic program)

Bachelor’s degree (e.g., B.S., B.A., A.B.)

Master’s degree (e.g., M.S., M.A., M.B.A.)

Professional school degree (e.g., M.D., D.D.S., D.VM,, LL.B., J.D.)
Doctoral degree (e.g., Ph.D., Ed.D.)

In these exercises, you will try to learn about the families of Cyberville by using
sampling.

a. Take a simple random sample of 500 families. Estimate the following popula-

tion

parameters, calculate the estimated standard errors of these estimates, and

form 95% confidence intervals:

i. The proportion of female-headed families
ii. The average number of children per family
iii. The proportion of heads of households who did not receive a high school

diploma

iv. The average family income

Repeat the preceding parameters for five different simple random samples of

size

i.
ii.
jii.

iv.

vi.

vii.

500 and compare the results.

. Take 100 samples of size 400.

For each sample, find the average family income.

Find the average and standard deviation of these 100 estimates and make
a histogram of the estimates.

Superimpose a plot of a normal density with that mean and standard devi-
ation of the histogram and comment on how well it appears to fit.

Plot the empirical cumulative distribution function (see Section 10.2). On
this plot, superimpose the normal cumulative distribution function with
mean and standard deviation as earlier. Comment on the fit.

. Another method for examining a normal approximation is via a normal

probability plot (Section 9.9). Make such a plot and comment on what it
shows about the approximation.

For each of the 100 samples, find a 95% confidence interval for the pop-
ulation average income. How many of those intervals actually contain the
population target?

Take 100 samples of size 100. Compare the averages, standard deviations,
and histograms to those obtained for a sample of size 400 and explain how
the theory of simple random sampling relates to the comparisons.

¢. For a simple random sample of 500, compare the incomes of the three family
types by comparing histograms and boxplots (see Chapter 10.6).

. Take simple random samples of size 400 from each of the four regions.

i. Compare the incomes by region by making parallel boxplots.
ii. Does it appear that some regions have larger families than others?
iii. Are there differences in education level among the four regions?
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€.

f.

Formulate a question of your choice and attempt to answer it with a simple
random sample of size 400.

Does stratification help in estimating the average family income? From a simple
random sample of size 400, estimate the average income and also the standard
error of your estimate. Form a 95% confidence interval. Next, allocate the 400
observations proportionally to the four regions and estimate the average income
from the stratified sample. Estimate the standard error and form a 95% confi-
dence interval. Compare your results to the results of the simple random sample.
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CHAPTER 8

Estimation of Parameters
and Fitting of Probability
Distributions

Introduction

In this chapter, we discuss fitting probability laws to data. Many families of probability
laws depend on a small number of parameters; for example, the Poisson family de-
pends on the parameter A (the mean number of counts), and the Gaussian family
depends on two parameters, ;1 and o. Unless the values of parameters are known in
advance, they must be estimated from data in order to fit the probability law.

After parameter values have been chosen, the model should be compared to the
actual data to see if the fit is reasonable; Chapter 9 is concerned with measures and
tests of goodness of fit.

In order to introduce and illustrate some of the ideas and to provide a concrete
basis for later theoretical discussions, we will first consider a classical example—the
fitting of a Poisson distribution to radioactive decay. The concepts introduced in this
example will be elaborated in this and the next chapter.

Fitting the Poisson Distribution to Emissions
of Alpha Particles

Records of emissions of alpha particles from radioactive sources show that the num-
ber of emissions per unit of time is not constant but fluctuates in a seemingly random
fashion. If the underlying rate of emission is constant over the period of observation
(which will be the case if the half-life is much longer than the time period of obser-
vation) and if the particles come from a very large number of independent sources
(atoms), the Poisson model seems appropriate. For this reason, the Poisson distribu-
tion is frequently used as a model for radioactive decay. You should recall that the

255
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Poisson distribution as a model for random counts in space or time rests on three
assumptions: (1) the underlying rate at which the events occur is constant in space
or time, (2) events in disjoint intervals of space or time occur independently, and (3)
there are no multiple events.

Berkson (1966) conducted a careful analysis of data obtained from the National
Bureau of Standards. The source of the alpha particles was americium 241. The
experimenters recorded 10,220 times between successive emissions. The observed
mean emission rate (total number of emissions divided by total time) was .8392
emissions per sec. The clock used to record the times was accurate to .0002 sec.

The first two columns of the following table display the counts, n, that were
observed in 1207 intervals, each of length 10 sec. In 18 of the 1207 intervals, there
were 0, 1, or 2 counts; in 28 of the intervals there were 3 counts, etc.

n Observed Expected
0-2 18 12.2
3 28 27.0
4 56 56.5
5 105 94.9
6 126 132.7
7 146 159.1
8 164 166.9
9 161 155.6
10 123 130.6
11 101 99.7
12 74 69.7
13 53 45.0
14 23 27.0
15 15 15.1
16 9 7.9
17+ 5 7.1

1207 1207

In fitting a Poisson distribution to the counts shown in the table, we view the
1207 counts as 1207 independent realizations of Poisson random variables, each of
which has the probability mass function

Ake=*

m=P(X =k)= a

In order to fit the Poisson distribution, we must estimate a value for A from the
observed data. Since the average count in a 10-second interval was 8.392, we take
this as an estimate of A (recall that the E£(X) = 1) and denote it by A.

Before continuing, we want to mention some issues that will be explored in
depth in subsequent sections of this chapter. First, observe that if the experiment
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were to be repeated, the counts would be different and the estimate of A would be
different; it is thus appropriate to regard the estimate of A as a random variable which
has a probability distribution referred to as its sampling distribution. The situation
is entirely analogous to tossing a coin 10 times and regarding the number of heads
as a binomially distributed random variable. Doing so and observing 6 heads generates
one realization of this random variable; in the same sense 8.392 is a realization of a
random variable. The question thus arises: what is the sampling distribution? This is
of some practical interest, since the spread of the sampling distribution reflects the
variability of the estimate. We could ask crudely, to what decimal place is the estimate
8.392 accurate? Second, later in this chapter we will discuss the rationale for choosing
to estimate A as we have done. Although estimating A as the observed mean count is
quite reasonable on its face, in principle there might be better procedures.

We now turn to assessing goodness of fit, a subject that will be taken up in depth
in the next chapter. Consider the 16 cells into which the counts are grouped. Under
the hypothesized model, the probability that a random count falls in any one of the
cells may be calculated from the Poisson probability law. The probability that an
observation falls in the first cell (0, 1, or 2 counts) is

pr =m0+ + 1

The probability that an observation falls in the second cell is p, = 3. The probability
that an observation falls in the 16th cell is

o0
Pie = Zﬂk

k=17

Under the assumption that X1, ..., X7 are independent Poisson random variables,
the number of observations out of 1207 falling in a given cell follows a binomial
distribution with a mean, or expected value, of 1207 py, and the joint distribution of the
counts in all the cells is multinomial with n = 1207 and probabilities py, ps, ..., pie-
The third column of the preceding table gives the expected number of counts in each
cell; for example, because p, = .0786, the expected count in the corresponding cell
is 1207 x .0786 = 94.9. Qualitatively, there is good agreement between the expected
and observed counts. Quantitative measures will be presented in Chapter 9.

Parameter Estimation

As was illustrated in the example of alpha particle emissions, in order to fit a probabil-
ity law to data, one typically has to estimate parameters associated with the probability
law from the data. The following examples further illustrate this point.

Normal Distribution
The normal, or Gaussian, distribution involves two parameters, ; and o, where p is
the mean of the distribution and o2 is the variance:

fxlp, o) =

71(«**#)2
e 2 o2 —_XN <X <X

1
o2
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EXAMPLE B
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FIGURE 8.1 Gaussian fit of current flow across a cell membrane to a frequency
polygon.

The use of the normal distribution as a model is usually justified using some
version of the central limit theorem, which says that the sum of a large number of
independent random variables is approximately normally distributed. For example,
Bevan, Kullberg, and Rice (1979) studied random fluctuations of current across a
muscle cell membrane. The cell membrane contained a large number of channels,
which opened and closed at random and were assumed to operate independently. The
net current resulted from ions flowing through open channels and was therefore the
sum of a large number of roughly independent currents. As the channels opened and
closed, the net current fluctuated randomly. Figure 8.1 shows a smoothed histogram
of values obtained from 49,152 observations of the net current and an approximat-
ing Gaussian curve. The fit of the Gaussian distribution is quite good, although the
smoothed histogram seems to show a slight skewness. In this application, informa-
tion about the characteristics of the individual channels, such as conductance, was
extracted from the estimated parameters . and o2 ]

Gamma Distribution
The gamma distribution depends on two parameters, « and A:

fxle, A) = L)»‘)‘)c""le"”, 0<x<o0
(o)
The family of gamma distributions provides a flexible set of densities for nonnegative
random variables.
Figure 8.2 shows how the gamma distribution fits to the amounts of rainfall
from different storms (Le Cam and Neyman 1967). Gamma distributions were fit
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FIGURE 8.2 Fit of gamma densities to amounts of rainfall for (a) seeded and
(b) unseeded storms.

to rainfall amounts from storms that were seeded and unseeded in an experiment to
determine the effects, if any, of seeding. Differences in the distributions between the

seeded and unseeded conditions should be reflected in differences in the parameters

o and A. [ ]

As these examples illustrate, there are a variety of reasons for fitting probability
laws to data. A scientific theory may suggest the form of a probability distribution
and the parameters of that distribution may be of direct interest to the scientific inves-
tigation; the examples of alpha particle emission and Example A are of this character.
Example B is typical of situations in which a model is fit for essentially descriptive
purposes as a method of data summary or compression. A probability model may
play arole in a complex modeling situation; for example, utility companies interested
in projecting patterns of consumer demand find it useful to model daily temperatures
as random variables from a distribution of a particular form. This distribution may
then be used in simulations of the effects of various pricing and generation schemes.
In a similar way, hydrologists planning uses of water resources use stochastic models
of rainfall in simulations.
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8.4

We will take the following basic approach to the study of parameter estimation.
The observed data will be regarded as realizations of random variables X, X», ..., X,
whose joint distribution depends on an unknown parameter 6. Note that 0 may be a
vector, such as (o, A) in Example B. Usually the X; will be modeled as independent
random variables all having the same distribution f (x|@), in which case their joint dis-
tribution is f(x|0) f (x2]0) - - - f(x,|0). We will refer to such X; as independent and
identically distributed, or i.i.d. An estimate of 6 will be a function of X, X,, ..., X,
and will hence be a random variable with a probability distribution called its sampling
distribution. We will use approximations to the sampling distribution to assess the
variability of the estimate, most frequently through its standard deviation, which is
commonly called its standard error.

It is desirable to have general procedures for forming estimates so that each new
problem does not have to be approached ab initio. We will develop two such proce-
dures, the method of moments and the method of maximum likelihood, concentrating
primarily on the latter, because it is the more generally useful.

The advanced theory of statistics is heavily concerned with “optimal estimation,”
and we will touch lightly on this topic. The essential idea is that given a choice of many
different estimation procedures, we would like to use that estimate whose sampling
distribution is most concentrated around the true parameter value.

Before going on to the method of moments, let us note that there are strong
similarities of the subject matter of this and the previous chapter. In Chapter 7 we were
concerned with estimating population parameters, such as the mean and total, and the
process of random sampling created random variables whose probability distributions
depended on those parameters. We were concerned with the sampling distributions
of the estimates and with assessing variability via standard errors and confidence
intervals. In this chapter we consider models in which the data are generated from a
probability distribution. This distribution usually has a more hypothetical status than
that of Chapter 7, where the distribution was induced by deliberate randomization. In
this chapter we will also be concerned with sampling distributions and with assessing
variability through standard errors and confidence intervals.

The Method of Moments

The kth moment of a probability law is defined as
e = E(X")

where X is a random variable following that probability law (of course, this is defined
only if the expectation exists). If X, X5, ..., X,, are i.i.d. random variables from that
distribution, the kth sample moment is defined as

e = %lek
i=1

We can view [1; as an estimate of u;. The method of moments estimates parameters
by finding expressions for them in terms of the lowest possible order moments and
then substituting sample moments into the expressions.
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Suppose, for example, that we wish to estimate two parameters, 6, and 6,. If 6,
and 6, can be expressed in terms of the first two moments as

O = fi(pr, n2)
0 = foa(i1, n2)
then the method of moments estimates are
= fi(ft1, t2)
= fa(, 2)

The construction of a method of moments estimate involves three basic steps:

1. Calculate low order moments, finding expressions for the moments in terms of the
parameters. Typically, the number of low order moments needed will be the same
as the number of parameters.

2. Invert the expressions found in the preceding step, finding new expressions for the
parameters in terms of the moments.

3. Insert the sample moments into the expressions obtained in the second step, thus
obtaining estimates of the parameters in terms of the sample moments.

To illustrate this procedure, we consider some examples.

Poisson Distribution
The first moment for the Poisson distribution is the parameter A = E(X). The first
sample moment is

=X=

§|>—

Z

which is, therefore, the method of moments estimate of A: A = X.

As a concrete example, let us consider a study done at the National Institute of
Science and Technology (Steel et al. 1980). Asbestos fibers on filters were counted
as part of a project to develop measurement standards for asbestos concentration.
Asbestos dissolved in water was spread on a filter, and 3-mm diameter punches were
taken from the filter and mounted on a transmission electron microscope. An operator
counted the number of fibers in each of 23 grid squares, yielding the following counts:

31 29 19 18 31 28
34 27 34 30 16 18
26 27 27 18 24 22
28 24 21 17 24

The Poisson distribution would be a plausible model for describing the variability
from grid square to grid square in this situation and could be used to characterize the
inherent variability in future measurements. The method of moments estimate of X is
simply the arithmetic mean of the counts listed above, these or A = 24.9.

If the experiment were to be repeated, the counts—and therefore the estimate—
would not be exactly the same. It is thus natural to ask how stable this estimate is.
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A standard statistical technique for addressing this question is to derive the sampling
distribution of the estimate or an approximation to that distribution. The statistical
model stipulates that the individual counts X; are independent Poisson random vari-
ables with parameter Ao. Letting § = > X;, the parameter estimate A=S/nisa
random variable, the distribution of which is called its sampling distribution. Now
from Example E in Section 4.5, the distribution of the sum of independent Poisson
random variables is Poisson distributed, so the distribution of S is Poisson (nig).
Thus the probability mass function of  is

P(h.=v) = P(S = nv)
(nko)nvefnkg
(nv)!

for v such that nv is a nonnegative integer.
Since S is Poisson, its mean and variance are both n\g, so

1
E() = ~E@S) =k

- 1 Ao

Var(A) = — Var(S) = —

n n
From Example A in Section 5.3, if nA is large, the distribution of S is approximately
normal; hence, that of A is approximately normal as well, with mean and variance
given above. Because E (L) = Ao, we say that the estimate is unbiased: the sampling
distribution is centered at A(. The second equation shows that the sampling distribution
becomes more concentrated about Ay as n increases. The standard deviation of this

distribution is called the standard error of A and is

Ao

Of course, we can’t know the sampling distribution or the standard error of A because
they depend on A, which is unknown. However, we can derive an approximation by
substituting A and A, and use it to assess the variability of our estimate. In particular,
we can calculate the estimated standard error of A as

~

A
s; =1/ —
n

24.9

At the end of this section, we will present a justification for using A in place of A,.

In summary, we have found that the sampling distribution of A is approximately
normal, centered at the true value A, with standard deviation 1.04. This gives us
a reasonable assessment of the variability of our parameter estimate. For example,
because a normally distributed random variable is unlikely to be more than two
standard deviations away from its mean, the error in our estimate of A is unlikely to
be more than 2.08. We thus have not only an estimate of 4, but also an understanding
of the inherent variability of that estimate.

For this example, we find
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In Chapter 9, we will address the question of whether the Poisson distribution
really fits these data. Clearly, we could calculate the average of any batch of numbers,
whether or not they were well fit by the Poisson distribution. ]

Normal Distribution
The first and second moments for the normal distribution are

mr=EX)=pn
po = E(X*) = p* + o7
Therefore,
w= [
0 = o — pui
The corresponding estimates of & and o2 from the sample moments are

p=X
1 n » 1 n
62 = ;fo—x = ;Z(Xi—X)z
i=1 i=1

From Section 6.3, the sampling distribution of X is N (1, 0*/n) and n6*/o* ~
Xf—l- Furthermore, X and 62 are independently distributed. We will return to these
sampling distributions later in the chapter. [ |

Gamma Distribution
The first two moments of the gamma distribution are

o

MIZX
a(a+1)

po=———

A2
(see Example B in Section 4.5). To apply the method of moments, we must express
a and A in terms of ; and p,. From the second equation,

2 1251
= + —
M2 = Uy 3
or
PR
o
Also, from the equation for the first moment given here,
2
%
o= Ap = 712
M2 — U]

The method of moments estimates are, since 6% = i, — 2,

SR

o=
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FIGURE 8.3 Gamma densities fit by the methods of moments and by the method of
maximum likelihood to amounts of precipitation; the solid line shows the method of
moments estimate and the dotted line the maximum likelihood estimate.
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As a concrete example, let us consider the fit of the amounts of precipitation
during 227 storms in Illinois from 1960 to 1964 to a gamma distribution (Le Cam and
Neyman 1967). The data, listed in Problem 42 at the end of Chapter 10, were gathered
and analyzed in an attempt to characterize the natural variability in precipitation
from storm to storm. A histogram shows that the distribution is quite skewed, so a
gamma distribution is a natural candidate for a model. For these data, X = .224 and
6% = .1338, and therefore @ = .375 and J=1.674.

The histogram with the fitted density is shown in Figure 8.3. Note that, in order
to make visual comparison easy, the density was normalized to have a total area equal
to the total area under the histogram, which is the number of observations times the
bin width of the histogram, or 227 x .2 = 45.4. Alternatively, the histogram could
have been normalized to have a total area of 1. Qualitatively, the fit in Figure 8.3 looks
reasonable; we will examine it in more detail in Example C in Section 9.9. [ |

We now turn to a discussion of the sampling distributions of & and A. In the previ-
ous two examples, we were able to use known theoretical results in deriving sampling
distributions, but it appears that it would be difficult to derive the exact forms of the
sampling distributions of A and &, because they are each rather complicated functions
of the sample values X, X, ..., X,,. However, the problem can be approached by
simulation. Imagine for the moment that we knew the true values 1 and «y. We could
generate many, many samples of size n = 227 from the gamma distribution with
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these parameter values, and from each of these samples we could calculate estimates
of A and «. A histogram of the values of the estimates of A, for example, should then
give us a good idea of the sampling distribution of A.

The only problem with this idea is that it requires knowing the true parameter
values. (Notice that we faced a problem very much like this in Example A.) So we
substitute our estimates of A and « for the true values; that is we draw many, many
samples of size n = 227 from a gamma distribution with parameters « = .375 and
A = 1.674. The results of drawing 1000 such samples of size n = 227 are displayed
in Figure 8.4. Figure 8.4(a) is a histogram of the 1000 estimates of « so obtained and
Figure 8.4(b) shows the corresponding histogram for A. These histograms indicate the
variability that is inherent in estimating the parameters from a sample of this size. For
example, we see that if the true value of « is .375, then it would not be very unusual
for the estimate to be in error by .1 or more. Notice that the shapes of the histograms
suggest that they might be approximated by normal densities.

The variability shown by the histograms can be summarized by calculating the
standard deviations of the 1000 estimates, thus providing estimated standard errors of
& and A. Tobe precise, if the 1000 estimates of « are denoted by ¥, i = 1, 2, ..., 1000,
the standard error of & is estimated as

1000

pa— I * )2
S 1000 iz:;(a’ @

where « is the mean of the 1000 values. The results of this calculation and the
corresponding one for A are s; = .06 and s; = .34. These standard errors are concise
quantifications of the amount of variability of the estimates @ = .375 and A = 1.674
displayed in Figure 8.4.
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FIGURE 8.4 Histogram of 1000 simulated method of moment estimates of (a) «
and (b) A.
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EXAMPLE D

Our use of simulation (or Monte Carlo) here is an example of what in statistics
is called the bootstrap. We will see more examples of this versatile method later.

An Angular Distribution
The angle 6 at which electrons are emitted in muon decay has a distribution with the
density

1+ ax
Sfxla) = 7

where x = cos . The parameter « is related to polarization. Physical considerations

dictate that || < L, but we note that f(x|a) is a probability density for |a| < 1.

The method of moments may be applied to estimate « from a sample of experimental

—1<x<1 and —1l<acx<l

measurements, X, ..., X,. The mean of the density is
1
1
n = / X tox dx = ¢
1 2 3

Thus, the method of moments estimate of « is @ = 3X. Consideration of the sampling
distribution of & is left as an exercise (Problem 13). |

Under reasonable conditions, method of moments estimates have the desirable
property of consistency. An estimate, 6, is said to be a consistent estimate of a
parameter, 6, if § approaches 6 as the sample size approaches infinity. The following
states this more precisely.

DEFINITION

Let 8, be an estimate of a parameter # based on a sample of size n. Then 8, is said
to be consistent in probability if 6, converges in probability to 6 as n approaches
infinity; that is, for any € > 0,

P(0,—0|>¢)—>0 asn— 00 [

The weak law of large numbers implies that the sample moments converge in
probability to the population moments. If the functions relating the estimates to the
sample moments are continuous, the estimates will converge to the parameters as the
sample moments converge to the population moments.

The consistency of method of moments estimates can be used to provide a jus-
tification for a procedure that we used in estimating standard errors in the previous
examples. We were interested in the variance (or its square root—the standard error)
of a parameter estimate 6. Denoting the true parameter by 6, we had a relationship
of the form

0y = 0 (to)

\/_
(In Example A, 03 = /Ao/n, so that o (L) = ~/A.) We approximated this by the
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estimated standard error
1
= T

We now claim that the consistency of § implies that s; ~ ;. More precisely,

o (0)

So

. A}
lim =1
n—0o0 aé

provided that the function o () is continuous in 6. The result follows since if 6 — 6y,
then U(@) — 0(6p). Of course, this is just a limiting result and we always have a
finite value of n in practice, but it does provide some hope that the ratio will be close
to 1 and that the estimated standard error will be a reasonable indication of variability.

Let us summarize the results of this section. We have shown how the method
of moments can provide estimates of the parameters of a probability distribution
based on a “sample” (an i.i.d. collection) of random variables from that distribution.
We addressed the question of variability or reliability of the estimates by observing
that if the sample is random, the parameter estimates are random variables having
distributions that are referred to as their sampling distributions. The standard deviation
of the sampling distribution is called the standard error of the estimate. We then faced
the problem of how to ascertain the variability of an estimate from the sample itself.
In some cases the sampling distribution was of an explicit form depending upon
the unknown parameters (Examples A and B); in these cases we could substitute
our estimates for the unknown parameters in order to approximate the sampling
distribution. In other cases the form of the sampling distribution was not so obvious,
but we realized that even if we didn’t know it explicitly, we could simulate it. By
using the bootstrap we avoided doing perhaps difficult analytic calculations by sitting
back and instructing a computer to generate random numbers.

The Method of Maximum Likelihood

As well as being a useful tool for parameter estimation in our current context, the
method of maximum likelihood can be applied to a great variety of other statistical
problems, such as curve fitting, for example. This general utility is one of the major
reasons for the importance of likelihood methods in statistics. We will later see that
maximum likelihood estimates have nice theoretical properties as well.

Suppose that random variables X, ..., X, have a joint density or frequency
function f(x, x2, ..., x,|0). Given observed values X; = x;, wherei = 1,...,n,
the likelihood of 6 as a function of x;, x», ..., x,, is defined as

lik(0) = f(x1,x2, ..., Xx,]0)

Note that we consider the joint density as a function of 6 rather than as a function of
the x;. If the distribution is discrete, so that f is a frequency function, the likelihood
function gives the probability of observing the given data as a function of the para-
meter 6. The maximum likelihood estimate (mle) of 6 is that value of 6 that max-
imizes the likelihood—that is, makes the observed data “most probable” or “most
likely.”
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If the X; are assumed to be i.i.d., their joint density is the product of the marginal
densities, and the likelihood is

lik(@) = [T rxil6)
i=1
Rather than maximizing the likelihood itself, it is usually easier to maximize its natural
logarithm (which is equivalent since the logarithm is a monotonic function). For an
i.i.d. sample, the log likelihood is

16) =) log[f(X;|6)]
i=1
(In this text, “log” will always mean the natural logarithm.)
Let us find the maximum likelihood estimates for the examples first considered
in Section 8.4.

Poisson Distribution
If X follows a Poisson distribution with parameter 1, then

)\'xe—k
P(X=x)=
x!
If Xy, ..., X, are i.i.d. and Poisson, their joint frequency function is the product of

the marginal frequency functions. The log likelihood is thus

I(\) = Z(xi logh — A —log X;!)

i=1

= logki:Xi —nk—i:logxi!
i=1 i=1

Log likelihood

o a4 o4 4L

S ® o £ 0O o
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FIGURE 8.5 Plot of the log likelihood function of 1 for asbestos data.
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Figure 8.5 is a graph of /() for the asbestos counts of Example A in Section 8.4.
Setting the first derivative of the log likelihood equal to zero, we find

/ 1 .
z(x)zxi;x,»—n:o
The mle is then
=X

We can check that this is indeed a maximum (in fact, /(}) is a concave function
of A; see Figure 8.5). The maximum likelihood estimate agrees with the method of
moments for this case and thus has the same sampling distribution. [ |

Normal Distribution
IfX,, X, ..., X,areiid. N(u, o), their joint density is the product of their marginal
densities:

. 1 1]xi—p :
f(xl,xz,---,on,U)—HWGXP<—2[ pu ])

Regarded as a function of u and o, this is the likelihood function. The log likelihood
is thus

n 1 <« )
I, 0) = —nlogo — log2m — —— ;(Xi — w0

The partials with respect to ; and o are

O
i=1

o o

al n 3 “ )
= 3 X; —

o=, T ;j( )

Setting the first partial equal to zero and solving for the mle, we obtain

Setting the second partial equal to zero and substituting the mle for p, we find that
the mle for o is

Again, these estimates and their sampling distributions are the same as those obtained
by the method of moments. [ ]
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EXAMPLE C Gamma Distribution
Since the density function of a gamma distribution is

1
fxla, A) = mk"‘x“’le’“, 0<x<o0
the log likelihood of an i.i.d. sample, X;, ..., X,,, is

le. ) =Y lelogh+ (@ — 1) log X; — AX; — log I'(e)]

i=1

= nalogh + (o« — I)ZIOgX,» —AZXi —nlogI' ()

i=1 i=l1

The partial derivatives are

3l " (@)
2 nlogh log X; —

da 08 +§ B4 T @)
al no -

e X;

Y

i=1
Setting the second partial equal to zero, we find

na

Sx
i=1

But when this solution is substituted into the equation for the first partial, we obtain
a nonlinear equation for the mle of «:

o=

| =

(@)

n =0
r'@)

n
nlogdé —nlog X + ZlogX,- -
i=1
This equation cannot be solved in closed form; an iterative method for finding the
roots has to be employed. To start the iterative procedure, we could use the initial
value obtained by the method of moments.

For this example, the two methods do not give the same estimates. The mle’s
are computed from the precipitation data of Example C in Section 8.4 by an iterative
procedure (a combination of the secant method and the method of bisection) using the
method of moments estimates as starting values. The resulting estimates are & = .441
and & = 1.96. In Example C in Section 8.4, the method of moments estimates were
found to be @ = .375 and A = 1.674. Figure 8.3 shows fitted densities from both
types of estimates of o and A. There is clearly little practical difference, especially if
we keep in mind that the gamma distribution is only a possible model and should not
be taken as being literally true.

Because the maximum likelihood estimates are not given in closed form,
obtaining their exact sampling distribution would appear to be intractable. We thus
use the bootstrap to approximate these distributions, just as we did to approximate
the sampling distributions of the method of moments estimates. The underlying ratio-
nale is the same: If we knew the “true” values, o and 1, say, we could approximate
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FIGURE 8.6 Histograms of 1000 simulated maximum likelihood estimates of (a) &
and (b) A.

the sampling distribution of their maximum likelihood estimates by generating many,
many samples of size n = 227 from a gamma distribution with parameters o and
Ao, forming the maximum likelihood estimates from each sample, and displaying the
results in histograms. Since, of course, we don’t know the true values, we let our
maximum likelihood estimates play their role: We generated 1000 samples each of
size n = 227 of gamma distributed random variables with « = .471 and A = 1.97.
For each of these samples, the maximum likelihood estimates of « and A were calcu-
lated. Histograms of these 1000 estimates are shown in Figure 8.6; we regard these
histograms as approximations to the sampling distribution of the maximum likelihood
estimates & and A.

Comparison of Figures 8.6 and 8.4 is interesting. We see that the sampling dis-
tributions of the maximum likelihood estimates are substantially less dispersed than
those of the method of moments estimates, which indicates that in this situation, the
method of maximum likelihood is more precise than the method of moments. The
standard deviations of the values displayed in the histograms are the estimated stan-

dard errors of the maximum likelihood estimates; we find s, = .03 and s; = .26.
Recall that in Example C of Section 8.4 the corresponding estimated standard errors
for the method of moments estimates were found to be .06 and .34. [ |
Muon Decay

From the form of the density given in Example D in Section 8.4, the log likelihood is

n

l(a) = Zlog(l +aX;) —nlog2

i=1

Setting the derivative equal to zero, we see that the mle of « satisfies the following



272

Chapter 8 Estimation of Parameters and Fitting of Probability Distributions

8.5.1

nonlinear equation:

n Xi
PR
el 1+O[Xi

Again, we would have to use an iterative technique to solve for &. The method of
moments estimate could be used as a starting value. [ ]

In Examples C and D, in order to find the maximum likelihood estimate, we
would have to solve a nonlinear equation. In general, in some problems involving
several parameters, systems of nonlinear equations must be solved to find the mle’s.
We will not discuss numerical methods here; a good discussion is found in Chapter 6
of Dahlquist and Bjorck (1974).

Maximum Likelihood Estimates of Multinomial
Cell Probabilities

The method of maximum likelihood is often applied to problems involving multino-

mial cell probabilities. Suppose that X, ..., X,,, the countsincells 1, ..., m, follow
a multinomial distribution with a total count of n and cell probabilities py, ..., py.
We wish to estimate the p’s from the x’s. The joint frequency function of X1, ..., X,,

18

| m
f(xla~--,xm|Plv-~-st): mn. szXl

H-xi! i=1

i=1
Note that the marginal distribution of each X; is binomial (n, p;), and that since
the X; are not independent (they are constrained to sum to n), their joint frequency
function is not the product of the marginal frequency functions, as it was in the
examples considered in the preceding section. We can, however, still use the method
of maximum likelihood since we can write an expression for the joint distribution.
We assume n is given, and we wish to estimate py, ..., p, with the constraint that
the p; sum to 1. From the joint frequency function just given, the log likelihood is

(pr..... pw) =logn! = logx;! + Y x;log p;

i=1 i=1
To maximize this likelihood subject to the constraint, we introduce a Lagrange mul-
tiplier and maximize

L(p1,.... pw}) =logn! = "logx;!+ Y x;log pi + A (Zp,- - 1)
i=1 i=1 i=1

Setting the partial derivatives equal to zero, we have the following system of
equations:
Xj .
) = ——, =1,....m
Dj Y J
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Summing both sides of this equation, we have

—n
1= —
A
or
A=—n
Therefore,
5 X
Pj= "

which is an obvious set of estimates. The sampling distribution of p; is determined
by the distribution of x;, which is binomial.

In some situations, such as frequently occur in the study of genetics, the multi-
nomial cell probabilities are functions of other unknown parameters 6; that is, p; =
pi(0). In such cases, the log likelihood of 6 is

[(6) =logn! — Zlogxl-! + Zx,- log p: (0)

i=1 i=1

Hardy-Weinberg Equilibrium

If gene frequencies are in equilibrium, the genotypes AA, Aa, and aa occur in a
population with frequencies (1 — 0)%,26(1 — ), and 62, according to the Hardy-
Weinberg law. In a sample from the Chinese population of Hong Kong in 1937,
blood types occurred with the following frequencies, where M and N are erythrocyte
antigens:

Blood Type
M MN N Total
Frequency 342 500 187 1029

There are several possible ways to estimate 6 from the observed frequencies. For ex-
ample, if we equate 62 with 187,/1029, we obtain .4263 as an estimate of 6. Intuitively,
however, it seems that this procedure ignores some of the information in the other
cells. If we let X, X,, and X3 denote the counts in the three cells and let n = 1029,
the log likelihood of 6 is (you should check this):

3
1) =logn! =Y "log X;! + X log(1 — 0)” + X;log 20(1 — ) + X3log6”

i=1

3
= logn! — Zlog X:!+ (2X, + X») log(1 — 6)
i=1

+ (2X; + X;)logh + X;log2

In maximizing /(0), we do not need to explicitly incorporate the constraint that the cell
probabilities sum to 1 since the functional form of p; (0) is such that Z?:l pi(0) = 1.
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Setting the derivative equal to zero, we have

2X,+ X, 2X5+ X,
1—-6 0

=0

Solving this, we obtain the mle:

2X5 + X»
2X, +2X5 + 2X;
2X5+ X,
- 2n
2 x 187 + 500
T 2% 1029

0 =

= .4247

How precise is this estimate? Do we have faith in the accuracy of the first, second,
third, or fourth decimal place? We will address these questions by using the boot-
strap to estimate the sampling distribution and the standard error of 6. The bootstrap
logic is as follows: If 6 were known, then the three multinomial cell probabilities,
(1 — 6)2,26(1 —6), and 62, would be known. To find the sampling distribution of 6,
we could simulate many multinomial random variables with these probabilities and
n = 1029, and for each we could form an estimate of 8. A histogram of these estimates
would be an approximation to the sampling distribution. Since, of course, we don’t
know the actual value of 6 to use in such a simulation, the bootstrap principle tells us
touse = .4247 in its place. With this estimated value of 6 the three cell probabilities
(M,MN, N) are .331, .489, and .180. One thousand multinomial random counts, each
with total count 1029, were simulated with these probabilities (see problem 35 at the
end of the chapter for the method of generating these random counts). From each of
these 1000 computer “experiments,” a value 6* was determined. A histogram of the
estimates (Figure 8.7) can be regarded as an estimate of the sampling distribution of
6. The estimated standard error of 8 is the standard deviation of these 1000 values:
sy = .011. [ |

Large Sample Theory for Maximum Likelihood Estimates

In this section we develop approximations to the sampling distribution of maximum
likelihood estimates by using limiting arguments as the sample size increases. The
theory we shall sketch shows that under reasonable conditions, maximum likelihood
estimates are consistent. We also develop a useful and important approximation for
the variance of a maximum likelihood estimate and argue that for large sample sizes,
the sampling distribution is approximately normal.

The rigorous development of this large sample theory is quite technical; we will
simply state some results and give very rough, heuristic arguments for the case of
an i.i.d. sample and a one-dimensional parameter. (The arguments for Theorems A
and B may be skipped without loss of continuity. Rigorous proofs may be found in
Cramér (1946).)
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FIGURE 8.7 Histogram of 1000 simulated maximum likelihood estimates of 6

described in Example A.

For an i.i.d. sample of size n, the log likelihood is

10) = log f (x:10)
i=1

We denote the true value of 6 by 6. It can be shown that under reasonable conditions
0 is a consistent estimate of 6; that is, 6 converges to 6 in probability as n approaches

infinity.

THEOREM A

Under appropriate smoothness conditions on f, the mle from an i.i.d. sample is

consistent.

Proof

The following is merely a sketch of the proof. Consider maximizing

1 1 <&
1) =~ ;log f(X,16)
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As n tends to infinity, the law of large numbers implies that
1
—1(0) — Elog f(X|60)
n

_ / log £ (x16) f (x|60) dx

It is thus plausible that for large n, the 6 that maximizes /(0) should be close
to the 6 that maximizes E log f(X|0). (An involved argument is necessary to
establish this.) To maximize E log f(X|0), we consider its derivative:

9
9 [ og fxl) f (el dx = [ 271D

39 o) f(x16o) dx

If 6 = 6,, this equation becomes
’ f(x|6o) dx = ! /f( 60) dx = i (1)=0
R TR B A
which shows that 6, is a stationary point and hopefully a maximum. Note that

we have interchanged differentiation and integration and that the assumption of
smoothness on f must be strong enough to justify this. ]

We will now derive a useful intermediate result.

LEMMA A

Define 1 (0) by
5 2
10) =E {8_9 log f(X|9)}

Under appropriate smoothness conditions on f, /(f) may also be expressed as
32
1) = —E [ﬁ log f(X|9)}

Proof
First, we observe that since f f(x]0) dx =1,

%/f(xhé’) dx =0

Combining this with the identity

a a
g *10) = {ﬁ log f(xIQ)} f(x10)
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we have

0= %/fme) dx:/ [;logf(xlf?)} f(x16) dx

where we have interchanged differentiation and integration (some assumptions
must be made in order to do this). Taking second derivatives of the preceding
expressions, we have

0 0
= - [% log f(x|0)] f(x]0) dx

82 bl 2
— [ [W logf(xlf))} sy dx+ [ﬁ log f(x|9)} £(x16) dix

From this, the desired result follows. [ ]

The large sample distribution of a maximum likelihood estimate is approximately
normal with mean 6, and variance 1/[n1(6)]. Since this is merely a limiting result,
which holds as the sample size tends to infinity, we say that the mle is asymptot-
ically unbiased and refer to the variance of the limiting normal distribution as the
asymptotic variance of the mle.

THEOREM B

Under smoothness conditions on f', the probability distribution of /n 1 (6) = 6o)
tends to a standard normal distribution.

Proof

The following is merely a sketch of the proof; the details of the argument are
beyond the scope of this book. From a Taylor series expansion,

0=100) ~1'B) + @ — 0)l" (6y)

A —1"(6p)
0 — 6y ~
( o) )
, —n~121'(6,)
120 — gy ~ 20
n'( o) IYTICN

First, we consider the numerator of this last expression. Its expectation is

Eln™ @) =n""?Y " E L% log f(X; I90>]
i=1

=0
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as in Theorem A. Its variance is

1 9 :
Var[n™"?1'(6p)] = p Z E [89 log f(Xi|90):|
i

= 1(6o)
Next, we consider the denominator:
1, 1 < 92
—1'(00) =~ 705 log f(xil6)

i=1

By the law of large numbers, the latter expression converges to

82
E {w log f(X|90)] = —1(6)

from Lemma A.

‘We thus have
. —1/21/(0)
20 — gy~ L
n’( o) @)
Therefore,
E[n'?@ — 01~ 0
Furthermore,
- 1(6)
Var[n'/?(6 — 0y)] ~
arln 0 = )] ~ 155
. 1
~ 1(60)
and thus
" 1
Var(f — 6y) ~
ar( o) 1@

The central limit theorem may be applied to /’(6y), which is a sum of i.i.d.
random variables:

n

a
HOEDY 36, o8 fXil6) -

=

Another interpretation of the result of Theorem B is as follows. For an i.i.d. sam-
ple, the maximum likelihood estimate is the maximizer of the log likelihood function,

10) =) log f(Xi|0)

i=1
The asymptotic variance is
1 1
nl(6)  El(6)
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when E[”(6,) is large, [(6) is, on average, changing very rapidly in a vicinity of 6,
and the variance of the maximizer is small.

A corresponding result can be proved from the multidimensional case. The vector
of maximum likelihood estimates is asymptotically normally distributed. The mean
of the asymptotic distribution is the vector of true parameters, 6,. The covariance of
the estimates §; and 0; is given by the i entry of the matrix n='1~"'(6y), where I(0)
is the matrix with ij component

a 0 0?
E | 35, 108 f(X16) 35~ log f(Xlé)} - —E {waej log £ (X6)
Since we do not wish to delve deeply into technical details, we do not specify the
conditions under which the results obtained in this section hold. It is worth mentioning,
however, that the true parameter value, 6y, is required to be an interior point of the set of
all parameter values. Thus the results would not be expected to apply in Example D of
Section 8.5 if ap = 1, for example. It is also required that the support of the density
or frequency function f (x|0) [the set of values for which f(x]0) > 0] does not depend
on 6. Thus, for example, the results would not be expected to apply to estimating 6 from
a sample of random variables that were uniformly distributed on the interval [0, 8].
The following sections will apply these results in several examples.

Confidence Intervals from Maximum
Likelihood Estimates

In Chapter 7, confidence intervals for the population mean p were introduced. Re-
call that the confidence interval for ; was a random interval that contained © with
some specified probability. In the current context, we are interested in estimating the
parameter 6 of a probability distribution. We will develop confidence intervals for 6
based on 8; these intervals serve essentially the same function as they did in Chapter 7
in that they express in a fairly direct way the degree of uncertainty in the estimate 0. A
confidence interval for 6 is an interval based on the sample values used to estimate 6.
Since these sample values are random, the interval is random and the probability that
it contains 6 is called the coverage probability of the interval. Thus, for example, a
90% confidence interval for 6 is a random interval that contains 6 with probability .9.
A confidence interval quantifies the uncertainty of a parameter estimate.

We will discuss three methods for forming confidence intervals for maximum
likelihood estimates: exact methods, approximations based on the large sample prop-
erties of maximum likelihood estimates, and bootstrap confidence intervals. The con-
struction of confidence intervals for parameters of a normal distribution illustrates the
use of exact methods.

We found in Example B of Section 8.5 that the maximum likelihood estimates of u
and o2 from an i.i.d. normal sample are

=X

1 < —
A2:_ X’__Xz
6 n; )
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A confidence interval for u is based on the fact that

VX —p)
S

where #,_; denotes the 7 distribution with n — 1 degrees of freedom and

L—1

1 < -
=0 Xi—X)?
i=1

(see Section 6.3). Let #,_(«r/2) denote that point beyond which the ¢ distribution with
n — 1 degrees of freedom has probability «/2. Since the ¢ distribution is symmetric
about 0, the probability to the left of —#,_;(«/2) is also «/2. Then, by definition,

V(X — )
S

P <_tn—l((x/2) =< < t,,_l((x/2)> =1—-«

The inequality can be manipulated to yield

— S - S
PlX——t (@) <u<X+—t_1(@/2))=1—«
( NG 1@/2) = p NG 1(ee/ )>
According to this equation, the probability that s lies in the interval X + St,_;(ct/ 2)/
/nis 1 — a. Note that this interval is random: The center is at the random point X
and the width is proportional to S, which is also random.

Now let us turn to a confidence interval for o2. From Section 6.3,

né? 5
~ Xn—l
0-2

where x| denotes the chi-squared distribution with n — 1 degrees of freedom. Let
%2 () denote the point beyond which the chi-square distribution with m degrees of
freedom has probability «. It then follows by definition that

2 ng’ 2
Pl x,(1—a/2)< =y S x(@/2) ) =1—-a

Manipulation of the inequalities yields

né? s né?
Pl—5—r<0 X —5—"——|=1-0«
Xo—1(@/2) X1 (1 —/2)

Therefore, a 100(1 — )% confidence interval for o2 is

( né? né? )

X1 (@/2) o (1 —a/2)

Note that this interval is not symmetric about 62—it is not of the form 62 + ¢, unlike
the previous example.

A simulation illustrates these ideas: The following experiment was done on a
computer 20 times. A random sample of size n = 11 from normal distribution with
mean i = 10 and variance 0> = 9 was generated. From the sample, X and 6% were
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FIGURE 8.8 20 confidence intervals for u (left panel) and for o2 (right panel) as
described in Example A. Horizontal lines indicate the true values.

calculated and 90% confidence intervals for  and o> were constructed, as described
before. Thus at the end there were 20 intervals for 1 and 20 intervals for o2. The 20
intervals for p are shown as vertical lines in the left panel of Figure 8.8 and the
20 intervals for o2 are shown in the right panel. Horizontal lines are drawn at the
true values 1 = 10 and o2 = 9. Since these are 90% confidence intervals, we expect
the true parameter values to fall outside the intervals 10% of the time; thus on the
average we would expect 2 of 20 intervals to fail to cover the true parameter value.
From the figure, we see that all the intervals for © actually cover u, whereas four of
the intervals of o2 failed to contain o2 [ ]

Exact methods such as that illustrated in the previous example are the exception
rather than the rule in practice. To construct an exact interval requires detailed knowl-
edge of the sampling distribution as well as some cleverness. A second method of
constructing confidence intervals is based on the large sample theory of the previous
section. According to the results of that section, the distribution of \/n/ (90)(9 — b))
is approximately the standard normal distribution. Since 6, is unknown, we will use
1(0) in place of 7(6y); we have employed similar substitutions a number of times
before—for example, in finding an approximate standard error in Example A of Sec-
tion 8.4. It can be further argued that the distribution of \/nl @) — 6y) is also
approximately standard normal. Since the standard normal distribution is symmetric
about 0,

P <—z(a/2> < \/nl )6 -6y < z(a/2>) ~l-a
Manipulation of the inequalities yields

0+ z(a/2)

1
Vnl ()
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as an approximate 100(1 — )% confidence interval. We now illustrate this procedure
with an example.

EXAMPLE B Poisson Distribution
The mle of A from a sample of size n from a Poisson distribution is

A=X
Since the sum of independent Poisson random variables follows a Poisson distribution,
the parameter of which is the sum of the parameters of the individual summands,
nk = Y, X, follows a Poisson distribution with mean ni. Also, the sampling
distribution of A is known, although it depends on the true value of A, which is
unknown. Exact confidence intervals for A may be obtained by using this fact, and
special tables are available (Pearson and Hartley 1966).

For large samples, confidence intervals may be derived as follows. First, we
need to calculate 7 (X). Let f(x|A) denote the probability mass function of a Poisson
random variable with parameter A. There are two ways to do this. We may use the
definition

3 2
1) =E {ﬁ log f(X|k)]

We know that
log f(x|X) = xlogh — A —logx!

X 2
I(A):E(Y—l)

Rather than evaluate this quantity, we may use the alternative expression for 7 (i)
given by Lemma A of Section 8.5.2:

and thus

2

9
1) =—E [mlog f(X|A)]

Since
2

7 log f(X) =~ 25
A2 A2
I (%) is simply
EX) 1
PR
Thus, an approximate 100(1 — «)% confidence interval for A is

— X
X+ z(oe/2)\/;

Note that the asymptotic variance is in fact the exact variance in this case. The
confidence interval, however, is only approximate, since the sampling distribution of
X is only approximately normal.
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As a concrete example, let us return to the study that involved counting asbestos
fibers on filters, discussed earlier. In Example A in Section 8.4, we found J =249,
The estimated standard error of A is thus (n = 23)

A
s;:\/;=1.04

An approximate 90% confidence interval for A is
A £ 1.65s;

or (23.2,26.6). This interval gives a good indication of the uncertainty inherent in
the determination of the average asbestos level using the model that the counts in the
grid squares are independent Poisson random variables. [ |

In a similar way, approximate confidence intervals can be obtained for parameters
estimated from random multinomial counts. The counts are not i.i.d., so the variance
of the parameter estimate is not of the form 1/[n1 (0)]. However, it can be shown that

. 1
E[l'(60)%] E[l"(60)]
and the maximum likelihood estimate is approximately normally distributed. Exam-
ple C illustrates this concept.

Var(0) ~

Hardy-Weinberg Equilibrium
Let us return to the example of Hardy-Weinberg equilibrium discussed in Example A
in Section 8.5.1. There we found § = .4247. Now,
2X1+ X, 2X5+ X»
1-6 0
In order to calculate E[!'(0)?], we would have to deal with the variances and covari-

ances of the X;. This does not look too inviting; it turns out to be easier to calculate
E[1"(0)].

I'0) = —

2X, 4+ Xo  2X3+ Xo

(1—6)2 62

Since the X; are binomially distributed, we have

l”(@) —

E(X)) = n(l —0)?
E(X5) = 2n6(1 —0)
E(X3) = nb>

We find, after some algebra, that

" n
E[I"(0)] = T —0)

Since 6 is unknown, we substitute 0 in its place and obtain the estimated standard
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error of 6:
1

61 -0
— /=D o

2n
An approximate 95% confidence interval for 6 is 6 & 1.96s;, or (.403, .447). (Note
that this estimated standard error of & agrees with that obtained by the bootstrap in
Example 8.5.1A.) u

Finally, we describe the use of the bootstrap for finding approximate confidence
intervals. Suppose that 0 is an estimate of a parameter —the true, unknown value
of which is #y—and suppose for the moment that the distribution of A = & — 6, is
known. Denote the «/2 and 1 — /2 quantiles of this distribution by § and S:ie.,

o o
P@—%§®=E

A — o
PO—-6<d8)=1——
2
Then

PE<0—-6<8)=1—-«a

and from manipulation of the inequalities,

PO-3<6<0—-8=1-«a

The preceding assumed that the distribution of & — 6, was known, which is
typically not the case. If 6, were known, this distribution could be approximated
arbitrarily well by simulation: Many, many samples of observations could be randomly
generated on a computer with the true value 6y; for each sample, the difference 6 — 6,
could be recorded; and the two quantiles § and § could, consequently, be determined
as accurately as desired. Since 6, is not known, the bootstrap principle suggests using
0 in its place: Generate many, many samples (say, B in all) from a distribution with
value 8; and for each sample construct an estimate of 0, say 9;‘, j=1,2,...,B.The
distribution of § — 6, is then approximated by that of 6* — @, the quantiles of which are
used to form an approximate confidence interval. Examples may make this clearer.

We first apply this technique to the Hardy-Weinberg equilibrium problem; we will
find an approximate 95% confidence interval based on the bootstrap and compare the
result to the interval obtained in Example C, where large-sample theory for maxi-
mum likelihood estimates was used. The 1000 bootstrap estimates of 6 of Example A
of Section 8.5.1 provide an estimate of the distribution of 6*; in particular the 25th
largest is .403 and the 975th largest is .446, which are our estimates of the .025 and
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975 quantiles of the distribution. The distribution of * — 8 is approximated by sub-
tracting @ = .425 from each 0, so the .025 and .975 quantiles of this distribution are
estimated as

= .403 — 425 = —.022

1
§ = .446 — 425 = .021
Thus our approximate 95% confidence interval is

(0 —35,0 —8) = (404, .447)

Since the uncertainty in 6 is in the second decimal place, this interval and that found
in Example C are identical for all practical purposes. [ |

Finally, we apply the bootstrap to find approximate confidence intervals for the
parameters of the gamma distribution fit in Example C of Section 8.5. Recall that
the estimates were @ = .471 and A = 1.97. Of the 1000 bootstrap values of
a*,af, o, ..., Ay, the 50th largest was .419 and the 950th largest was .538; the
.05 and .95 quantiles of the distribution of «* — & are approximated by subtracting &
from these values, giving

= .419 — 471 = —.052

)}

§ = .538 — 471 = .067

Our approximate 90% confidence interval for «y is thus
(@ —8,& — §) = (.404, .523)

The 50th and 950th largest values of A* were 1.619 and 2.478, and the corresponding
approximate 90% confidence interval for A is (1.462, 2.321). [ |

We caution the reader that there are a number of different methods of using the
bootstrap to find approximate confidence intervals. We have chosen to present the
preceding method largely because the reasoning leading to its development is fairly
direct. Another popular method, the bootstrap percentile method, uses the quantiles
of the bootstrap distribution of & directly. Using this method in the previous example,
the confidence interval for & would be (419, .538). Although this direct equation
of quantiles of the bootstrap sampling distribution with confidence limits may seem
initially appealing, its rationale is somewhat obscure. If the bootstrap distribution is
symmetric, the two methods are equivalent (see Problem 38).

The Bayesian Approach
to Parameter Estimation

A preview of the Bayesian approach was given in Example E of Section 3.5.2, which
should be reviewed before continuing.
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In the Bayesian approach, the unknown parameter 6 is treated as a random vari-
able, with “prior distribution” fg(6) representing what we know about the parameter
before observing data, X. In the following, we assume ® is a continuous random
variable; the discrete case is entirely analogous. This model is in contrast to the ap-
proaches described in the previous sections, in which 6 was treated as an unknown
constant. For a given value, ® = 6, the data have the probability distribution (density
or probability mass function) fxje(x|0). The joint distribution of X and © is thus

frex,0) = fxex|0)fo(0)

and the marginal distribution of X is
fx(x) = /fx,@(x, 0)do

= /fx|@(XI9)f@(9)d9

The distribution of ® given the data X is thus

Sfxo(x,0)
fx(x)
_ fxje(x16) fo (0)
[ fxio(x10) fo (6)dd
This is called the posterior distribution; it represents what is known about ® having

observed data X. Note that the likelihood is fxe(x|0), viewed as a function of €, and
we may usefully summarize the preceding result as

Jox(@1x) x fxje(x]0) x fo(6)
Posterior density o Likelihood x Prior density

f(e)\x(9|x) =

The Bayes paradigm has an appealing formal simplicity as it involves elementary
probability operations. We will now see what it amounts to for examples we considered
earlier.

Fitting a Poisson Distribution

Here the unknown parameter is A, which has a prior distribution f,()), and the data
areni.i.d. observations Xy, X», ..., X,, which for a given value A are Poisson random
variables with

Xi ,—A

fX,‘|A(-xi|)")= xi=071725'~'

N
it

Their joint distribution given A is (from independence) the product of their marginal
distributions given A

AE;;lxi e—nk

fX\A(xM) = m
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where X denotes (X, X», ..., X,,). The posterior distribution of A given X is then

)\E;lzlxiefn}‘fA ()\)

Sax(Ax) = f)\’zlflzlxiefnlf/\(k) dir

(the term []?_, x;! has cancelled out).

Thus, to evaluate the posterior distribution, we have to do two things: spec-
ify the prior distribution f,(A) and carry out the integration in the denominator of
the preceding expression. For illustration, we consider the data of Examples 8.4A
and 8.5A.

We will consider two approaches to specifying the prior distribution. The first
is that of an orthodox Bayesian who takes very seriously the model that the prior
distribution specifies his prior opinion. Note that this specification should be done
before seeing the data, X, and he is required to provide the probability density fx (1)
through introspection. This is not an easy task to carry out, and even the orthodox often
compromise for convenience. He thus decides to quantify his opinion by specifying a
prior mean p¢; = 15 and standard deviation o = 5 and to use, because the math works
out nicely as we will see, a gamma density with that mean and standard deviation.
This choice could be aided by plotting gamma densities for various parameter values.
The prior density is shown in Figure 8.9. Using the relationships developed in Exam-
ple C in Section 8.4, the second moment is (t, = 3 + o> = 250 and the parameters
of the gamma density are

04 |

03

0.0 [

FIGURE 8.9 First statistician’s prior (solid) and posterior (dashed). Second
statistician’s posterior (dotted).
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(We denote the parameter by v rather than by the usual A since A has already been
used for the parameter of the Poisson distribution.) The prior distribution for A is then
va

A) = A(Ot*lefv)\
fa(d) )
After some cancellation, the posterior density is
)LEX[+DK*167(H+U))L

fooo ASxita—lp—(+v)i ),

Sax(Ax) =

Now, consider this an important trick that is used time and again in Bayesian calcula-
tions: the denominator is a constant that makes the expression integrate to 1. We can
deduce from the form of the numerator that the ratio must be a gamma density with
parameters

o/:Zx,-+a:582
V=n+v=236

This standard trick allows the statistician to avoid having to do any explicit integra-
tion. (Make sure you understand it, because it will occur again several times.) The
posterior density is shown in Figure 8.9. Compare it to the prior distribution to observe
how observation of the data, X, has drastically changed his state of knowledge about
A. Notice that the posterior density is much more symmetric and looks like a normal
density (that this is no accident will be shown later). [ |

According to the Bayesian paradigm, all the information about A is contained in
the posterior distribution. The mean of this distribution (the posterior mean) is

!/

o
Mpost = W =247

The most probable value of A, the posterior mode, is 24.6. (Verify that the gamma
density is maximized at (¢ — 1)/v.) Either of these two values could be used as a
point estimate of the unknown mean of the Poisson distribution, if a single number is
required.
The variance of the posterior distribution is
2 o
Opost = 17 = 1.04

and the posterior standard deviation is oy = 1.02, which is a simple measure of
variability—the posterior distribution of A has mean 24.7 and standard deviation
1.02. A Bayesian analogue of a 90% confidence interval is the interval from the 5th
percentile to the 95th percentile of the posterior, which can be found numerically to
be [23.02, 26.34]. A common alternative to this interval is a high posterior density
(HPD) interval, formed as follows: Imagine placing a horizontal line at the high point
of the posterior density and moving it downward until the interval of A formed below
where the line cuts the density contained 90% probability. If the posterior density is
symmetric and unimodal, as is nearly the case in Figure 8.9, the HPD interval will
coincide with the interval between the percentiles.
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The second statistician takes a more utilitarian, noncommittal approach. She
believes that it is implausible that the mean count A could be larger than 100, and
uses a simple prior that is uniform on [0, 100], without trying to quantify her opinion
more precisely. The posterior density is thus

Sax(Ax) = 100 , 0<x<100

1 100
— AT e ),
100 J,

)\Zf:lx, e—nk 1

The denominator has to be integrated numerically, but this is easy to do for such
a smooth function. The resulting posterior density is shown in Figure 8.9. Using
numerical evaluations, she finds that the posterior mode is 24.9, the posterior mean
is 25.0, and the posterior standard deviation is 1.04. The interval from the 5th to the
95th percentile is [23.3, 26.7].

We now compare these two results to each other and to the results of maximum
likelihood analysis.

Estimate Bayes 1 Bayes 2 Maximum Likelihood
mode 24.6 24.9 24.9

mean 24.7 25.0 —

standard deviation 1.02 1.04 1.04

upper limit 26.3 26.7 26.6

lower limit 23.0 23.3 232

Comparing the results of the second Bayesian to those of maximum likelihood,
it is important to realize that her posterior density is directly proportional to the like-
lihood for 0 < A < 100, because the prior is flat over this range and the posterior is
proportional to the prior times the likelihood. Thus, her posterior mode and the max-
imum likelihood estimate are identical. There is no such guarantee that her posterior
standard deviation and the approximate standard error of the maximum likelihood
estimate are identical, but they turn out to be, to the number of significant figures
displayed in the table. The two 90% intervals are very close.

Now compare the results of the first and second Bayesians. Observe that although
his prior opinion was not in accord with the data, the data strongly modified the prior,
to produce a posterior that is close to hers. Even though they start with quite different
assumptions, the data forces them to very similar conclusions. His prior opinion has
indeed influenced the results: his posterior mean and mode are less than hers, but
the influence has been mild. (If there had been less data or if his prior opinions
had been much more biased to low values, the results would have been in greater
conflict.) The fundamental result that the posterior is proportional to the prior times
the likelihood helps us to understand the difference: the likelihood is substantial only
in the region approximately between A = 22 and 1 = 28. (This can be seen in the
figure, because the second statistician’s posterior is proportional to the likelihood.
See Figure 8.5, also). In this region, his prior decreases slowly, so the posterior is
proportional to a weighted version of the likelihood, with slowly decreasing weight.
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The first Bayesian’s posterior thus differs from the second by being pushed up slightly
on the left and pulled down on the right.

Although they are very similar numerically, there is an important difference
between the Bayesian and frequentist interpretation of the confidence intervals. In
the Bayesian framework, A is a random variable and it makes perfect sense to say,
“Given the observations, the probability that A is in the interval [23.3, 26.7] is 0.90.”
Under the frequentist framework, such a statement makes no sense, because X is a
constant, albeit unknown, and it either lies in the interval [23.3, 26.7] or doesn’t—no
probability is involved. Before the data are observed, the interval is random, and it
makes sense to state that the probability that the interval contains the true parameter
value is 0.90, but after the data are observed, nothing is random anymore. One way to
understand the difference of interpretation is to realize that in the Bayesian analysis
the interval refers to the state of knowledge about A and not to A itself.

Finally, we note that an alternative for the second statistician would have been to
use a gamma prior because of its analytical convenience, but to make the prior very
flat. This can be accomplished by setting « and A to be very small.

Normal Distribution
It is convenient to reparametrize the normal distribution, replacing o2 by £ = 1/0?;
& is called the precision. We will also use 6 in place of . The density is then

£ 172 |
f(x10,8) = (E) exp (—Eé(x - 9)2)

The normal distribution has two parameters, and we will consider cases of Bayesian
analysis depending on which of them are known and unknown. [ |

Case of Unknown Mean and Known Variance

We first consider the case in which the precision is known, & = &, and the mean, 6,
is unknown. In the Bayesian treatment, the mean is a random variable, ®. It is mathe-
matically convenient to use a prior distribution for ®, which is N (6, gp;i{)r). This prior
is very flat, or uninformative, when &, is very small, i.e., when the prior variance
is very large. Thus, if X = (X, X», ..., X,,) are independent given 6

Soix (0lx) o fxjo(x]0) x fo(0)
%_O e _%_0 2 éprior 2
=\ 27 ;E[lexp 7(}@—9) X o
X exp (—_%’“"r ® - 90)2>

1 n
X €Xp <_2 l:SO Z(xi - 9)2 + Eprior(e - 90)2:|>
i=1

Here we have exhibited only the terms in the posterior density that depend upon 6;
the last expression above shows the shape of the posterior density as a function of 6.
The posterior density itself is proportional to this expression, with a proportionality
constant that is determined by the requirement that the posterior density integrates to 1.
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We will now manipulate the expression for the numerator to cast it in a form so
that we can recognize that the posterior density is normal. Expressing Y (x; — 60)? =
>o(xi — %)2 4+ n(f — x)?, and absorbing more terms that do not depend on 6 into the
constant of proportionality (a typical move in Bayesian calculations), we find

1
f(*)\X(9|x) X exp (_E[HEO(G - )_6)2 + Eprior(e - 90)2]>

Now, observe that this is of the form exp(—(1/2)Q(0)), where Q(6) is a quadratic
polynomial. We can find expressions &pos and 6o, and write

00) = &posi (0 — 9posl)2 + terms that do not depend on 6

and conclude that the posterior density is normal with posterior mean €, and pos-
terior precision &,0s. Again, terms that do not depend on 6 do not affect the shape of
the posterior density and are absorbed in the normalization constant that makes the
posterior density integrate to 1. Thus we expand Q(6) and identify the coefficient of
6% as the posterior precision and the coefficient of —@ as twice the posterior mean
times the posterior precision. Doing so, we find

%‘post =né + Sprior

nSO)_C + 90$prior
n%_O + g::prior
-5 ngO + 9() gprior
n‘i:O + S[Jrior nSO + éprior

The posterior density of 6 is thus normal with this mean and precision. Note that the
precision has increased and that the posterior mean is a weighted combination of the
sample mean and the prior mean.

To interpret these results, consider what happens when &0 << 180, which would
be the case if n were sufficiently large of if &0, Were small (as for a very flat prior).
Then the posterior mean would be

post —

epost ~ X
which is the maximum likelihood estimate, and

Epost ~ né

This last equation can be written as o, = o /n, which is just the variance of X in
the non-Bayesian setting. In summary, if the flat prior with very small &, is used,
the posterior density of 6 is very close to normal with mean X and variance o /n.

|

Case of Known Mean and Unknown Variance

In this case, the precision is unknown and is treated as a random variable E, with
prior distribution fz(£). Given &, the X; are independent N (6y, £7'). Let X =
(X1, X5,...,X,). Then

SfaxElx) o fxie(x|§) f=(§)
1
o §" exp (—55 > i — 90)2) f=(®)
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Observing how the density depends on &, we realize that it is analytically convenient

—

to specify the prior to be a gamma density: & ~ I'(«, A). Then

1
Faix(Elx) o< §"2 exp (‘5% S - 90>2) gt
which is a gamma density with parameters,

+7’l
Apost = & 5
P 2

1
)"post =i+ 5 Z(xi - 90)2
In the case of a flat prior (small o and A), the posterior mean and mode are

1
: N 2
Posterior mean & - Z(xi — 6o)

1

— D =)’

The former is the maximum likelihood estimate of 2. In the limit, A — 0, @ — 0,

Posterior mode ~

1
faix(Elx) oc £ exp (—55 Z(xi - 90)2> |

Case of Unknown Mean and Unknown Variance
In this case, there are two unknown parameters, and a Bayesian approach requires
the specification of a joint two-dimensional prior distribution. We follow a path of
mathematical convenience and take the priors to be independent:
-1
@ ~ N(e(), ‘s;:prior)

E~T(a, )
We then have
fo.eix(0,§8|x) < fxjo.2(x10,§) fo(0) f=(&)

o E" exp (-% Z(xi - 9)2)

X exp <—‘§"§‘”(9 - 90)2) g%~ exp(—1£)

From the manner in which 6 and & occur in the first exponential, it appears that the
two variables are not independent in the posterior even though they were in the prior.
To evaluate this joint posterior density, we would have to find the constant of propor-
tionality that makes it integrate to 1—the normalization constant. Two dimensional
numerical integration could be used.

Often the primary interest is in the mean, 8, and one useful aspect of Bayesian
analysis is that information about 6 can be “marginalized” by integrating out &:

f@\x(9|x)=/0 fo.zx (@, &lx)dé
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Examining the preceding expression for fg zx(0, &|x) as a function of &, we see
that it is of the form of a gamma density, with parameters @ = « +n/2 and A =
A+ (1/2) 3> (x; — 0)?, so we can evaluate the integral. We thus find

Eprior _ 2 F(Ol + n/2)
2 (6 — 6o) )> At > —orpn

This is not a density that we recognize, but it could be evaluated numerically. Doing
so would again entail finding the normalizing constant, which could be done by
numerical integration. Some simplifications occur when 7 is large or when the prior
is quite flat (@, A, &prior are small). Then

Sfoix(0]x) (Z(xi B 9)2> —n/2

This posterior is maximized when > (x; — 0)? is minimized, which occurs at § =
X. We can relate this to the result we found for maximum likelihood analysis by
expressing

Sfoix(0]x) oc exp <—

D =67 =) (=3 +n@ -7
=mn—Ds*+nO —3x)?
n(@ — x)*
n — 1)52>

Substituting this above and absorbing terms that do not depend on 6 into the propor-
tionality constant, we find

=n—1)s? (1+

n—1 52

1 n(e _ )_6)2 —n/2
Soix(@]x) o (1 + _7>

Now comparing this to the definition of the ¢ distribution (Section 6.2), we see that

V(O — %)
—_— t”l—l

s
corresponding to the result from maximum likelihood analysis.

The interval X &1, 1 (a/2)s/+/n was earlier derived as a 100(1 — o) % confidence
interval centered about the maximum likelihood estimate, and here it has reappeared
in the Bayesian analysis as an interval with posterior probability 1 — «. There are
differences of interpretation, however, just as there were for the earlier Poisson case.
The Bayesian interval is a probability statement referring to the state of knowledge
about 0 given the observed data, regarding 6 as a random variable. The frequentist
confidence interval is based on a probability statement about the possible values of
the observations, regarding 6 as a constant, albeit unknown. u

Hardy-Weinberg Equilibrium

We now turn to a Bayesian treatment of Example A in Section 8.5.1. We use the
multinomial likelihood function and a prior for 6, which is uniform on [0, 1]. The
posterior density is thus proportional to the likelihood, and is shown in Figure 8.10.
Note that it looks very much like a normal density, a phenomenon that will be
explored in a later section. Since fyje(x]6) is a polynomial in 6 (of high degree),
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FIGURE 8.10 Posterior distribution of ©.

the normalization constant can in principle be computed analytically. (Alternatively,
all the computations can be done numerically.)

Because the prior is flat, the posterior is directly proportional to the likelihood
and the maximum of the posterior density is the maximum likelihood estimate, 6 =
0.4247. The 0.025 percentile of the density is 0.404, and the 0.975 percentile is 0.446.
These results agree with the approximate confidence interval found for the maximum
likelihood estimate in Example C in Section 8.5.3. [ |

Further Remarks on Priors

In the previous section, we saw that if the prior for a Poisson parameter is chosen
to be a gamma density, then the posterior is also a gamma density. Similarly, when
the prior for a normal mean with known variance is chosen to be normal, then the
posterior is normal as well. Earlier, in Example E in Section 3.5.2, a beta prior was
used for a binomial parameter, and the posterior turned out to be beta as well. These
are examples of conjugate priors: if the prior distribution belongs to a family G
and, conditional on the parameters of G, the data have a distribution H, then G is
said to be conjugate to H if the posterior is in the family G. Other conjugate priors
will be the subject of problems at the end of the chapter. Conjugate priors are used
for mathematical convenience (required integrations can be done in closed form)
and because they can assume a variety of shapes as the parameters of the prior are
varied.

In scientific applications, it is usually desirable to use a flat, or “uninformative,”
prior so that the data can speak for themselves. Even if a scientific investigator actually
had a strong prior opinion, he or she might want to present an “objective” analysis.
This is accomplished by using a flat prior so that the conclusions, as summarized in
the posterior density, are those of one who is initially unopinionated or unprejudiced.
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If an informative prior were used, it would have to be justified to the larger scientific
community. The objective prior thus has a hypothetical, or “what if,” status: if one
was initially indifferent to parameter values in the range in which the likelihood is
large, then one’s opinion after observing the data would be expressed as a posterior
proportional to the likelihood.

Attempts have been made to formalize more precisely what the notion of an unin-
formative prior means. One problem that is addressed is caused by reparametrization.
For example, suppose that the prior density of the precision £ is taken to be uniform on
an interval [a, b], which might seem to be a reasonable way to quantify the notion of
being uniformative. However, if the variance o2 = 1/, rather than the precison, was
used, the prior density of o> would not be uniform on [b~!, a~']. We will not delve
further into these issues here, except to note that the parametrization 6 or g(6) would
make a difference only if the difference in the shapes of the priors was substantial in
the region in which the likelihood was large.

We saw in the Poisson example that if & and v are very small, the gamma prior
is quite flat and the posterior is proportional to the likelihood function. Formally, if o
and v are set equal to zero, then the prior is

Fragn) =27" 0< i < o0

But this function does not integrate to 1—it is not a probability density. A similar
phenomena occurs in the normal case with unknown mean and known precision, if
the prior precision is set equal to 0. The prior is then

fo@) x1, —o0 <0 <o

and not a probability density either. Such priors are called improper priors (priors
that lack propriety).

In general, if an improper prior is formally used, the posterior may not be a
density either, because the denominator of the expression for the posterior density,
f fxje(x10) fo () d6 may not converge. (Note that it is integrated with respect to
0, not x.) This has not been the case in our examples. For the Poisson example, if
fa(A) o< A7!, then the denominator is

o0
/ Ao g < oo
0
In the normal case, too, the integral is defined, and thus there is a well-defined posterior
density.

Let us revisit some examples using the device of an improper prior. In the Poisson
example, using the improper prior f, (A) = A~! results in a (proper) posterior

Fapx (ux) o A2 g

which can be recognized as a gamma density.

In the normal example with unknown mean and variance, we can take 6 and & to
be independent with improper priors fg(9) = 1 and fz(§) = £~!. The joint posterior
of 6 and £ is then

foz0. 1) o €727 xp (=3 S0 - 01
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Expressing Y 7, (x; —0)> = (n — 1)s> + n(0 — x)*, we have

fo.zix(0, §1x) o £ exp (‘%01 - 1)s2> exp (‘%w — )‘c)2>

For fixed &, this expression is proportional to the conditional density of 6 given &.
(Why?) From the form of the dependence on 6, we see that conditional on &, 0 is
normal with mean X and precision n&. By integrating out &£, we can find the marginal
distribution of € and relate it to the ¢ distribution as was done earlier.

Since improper priors are not actually probability densities, they are difficult to
interpret literally. However, the resulting posteriors can be viewed as approximations
to those that would have arisen with extreme values of the parameters of proper
priors. The priors corresponding to such extreme values are very flat, so the posterior
is dominated by the likelihood. Then it is only in the range in which the likelihood is
large that the prior makes any practical difference—truncating the improper prior well
outside this range to produce a proper prior will not appreciably change the posterior.

Large Sample Normal Approximation to the Posterior

We have seen in several examples that the posterior distribution is nearly normal with
the mean equal to the maximum likelihood estimate, and that the posterior standard
deviation is close to the asymptotic standard deviation of the maximum likelihood
estimate. The two methods thus often give quite comparable results. We will not give
a formal proof here, but rather will sketch an argument that the posterior distribution
is approximately normal with the mean equal the the maximum likelihood estimate,
6, and variance approximately equal to —[I”(8)]~".
Denoting the observations generically by x, the posterior distribution is

Soix(0lx) o< fo(0) fxje(x]0)
= exp[log fo(&)]expllog fxje(x|0)]
= expllog fo(0)]expll(H)]
Now, if the sample is large, the posterior is dominated by the likelihood, and in the

region where the likelihood is large, the prior is nearly constant. Thus, to an approxi-
mation,

foix(0x) o exp [l(é) + @O —-0I'@) + %(9 —0)’1"()
x exp B(@ — 9)21”(9)]

In the last step, we used the fact that since 0 is the maximum likelihood estimate
I'(@) = 0. The term (/) was absorbed into a proportionality constant, since we are
evaluating the posterior as a function of 6. Finally, observe that the last expression is
proportional to a normal density with mean 6 and variance —[/ ”(é)]‘l.
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Computational Aspects

Contemporary computational resources have had an enormous impact on Bayesian
inference. As we have seen in several examples, the computationally difficult part
of Bayesian inference is the calculation of the normalizing constant that makes the
posterior density integrate to 1. Traditionally, such calculations were performed ana-
lytically, often using conjugate priors so that the integrations could be done explicitly.
The numerical integration of a well-behaved function of a small number of variables
is now trivial.

Difficulties do arise in high dimensional problems, however, and the integrations
are often done by sophisticated Monte Carlo methods. We will not go into these
sorts of methods in this book, but will hint at their nature in the following exam-
ple of a method called Gibbs Sampling. Consider, as a simple example, inference
for a normal distribution with unknown mean and variance. From Example B in
Section 8.6

fo.zix(0, &|x) oc E"* exp <—§ Z(xi — 9)2)

X exp (—

For simplicity, suppose that an improper prior is used: &yior — 0,00 — 0,4 — 0.
Then

s";‘" = 90)2> £ exp(—A§)

fo.zx (@, E1x) oc £ exp (—% Z(xi - 9)2>

o E"* Vexp (%(9 — 2)2)
Here we expressed

D@ =6 =) (x—’+n@ -3

and absorbed terms that do not involve 6 into the constant of proportionality. To study
the posterior distribution of & and 6 by Monte Carlo, we would draw many pairs
(&, 6¢) from this joint density; the problem is how to actually do this.

Gibbs Sampling would accomplish this in the following way. Observe that the
expression fg gix (0, &]x) shows that for given &, 0 is normally distributed with mean
X and precision n&. (Fix & in the expression and recognize a normal density in 6.)
Also, if 0 is fixed, the density of & is a gamma density. Gibbs Sampling alternates
back and forth between the two conditional distributions:

Choose an initial value 6y; X would be a natural choice.
Generate &) from a gamma density with parameter 6.
Generate 0, from a normal distribution with parameter &,.
Generate &, from a gamma density with parameter 6.
Continue on in this fashion.

SR wh =

The analysis of the algorithm and why it works is beyond the scope of this book. A
“burn-in” period is required so that we might run this scheme for a few hundred steps
before beginning to record pairs (&, 6;), k = 1, ..., N, which would be regarded
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as simulated pairs from the posterior. A further complication is that these pairs are
not independent of one another. But, nonetheless, a histogram of the collection of 6
could be used as an estimate of the marginal posterior distribution of ®. The posterior
mean of ® can be estimated as

1 N
E@©IX) ~ Zek
k=1

Efficiency and the Cramér-Rao
Lower Bound

In most statistical estimation problems, there are a variety of possible parameter
estimates. For example, in Chapter 7 we considered both the sample mean and a
ratio estimate, and in this chapter we considered the method of moments and the
method of maximum likelihood. Given a variety of possible estimates, how would we
choose which to use? Qualitatively, it would be sensible to choose that estimate whose
sampling distribution was most highly concentrated about the true parameter value.
To define this aim operationally, we would need to specify a quantitative measure
of such concentration. Mean squared error is the most commonly used measure of
concentration, largely because of its analytic simplicity. The mean squared error of §
as an estimate of 6 is

MSE @) = E@ — 6,)*
= Var(0) + (E@®) — 6,)*

(See Theorem A of Section 4.2.1.) If the estimate 6 is unbiased [ E (8)= 6,], MSE()=
Var(d). When the estimates under consideration are unbiased, comparison of their
mean squared errors reduces to comparison of their variances, or equivalently, stan-
dard errors.

Given two estimates, & and 8, of a parameter 6, the efficiency of 9 relative to &
is defined to be

i

Thus, if the efficiency is smaller than 1, 0 has a larger variance than 9 has. This
comparison is most meaningful when both § and 6 are unbiased or when both have
the same bias. Frequently, the variances of 6 and 6 are of the form

A Cq
Var(@) = 4
n

~ Cy
Var(@) = =
n

where n is the sample size. If this is the case, the efficiency can be interpreted as
the ratio of sample sizes necessary to obtain the same variance for both & and 4. (In
Chapter 7, we compared the efficiencies of estimates of a population mean from a
simple random sample, a stratified random sample with proportional allocation, and
a stratified random sample with optimal allocation.)
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Muon Decay
Two estimates have been derived for « in the problem of muon decay. The method of
moments estimate is
a=3X
The maximum likelihood estimate is the solution of the nonlinear equation

n

X;
Z1+55Xi =0

i=1

We need to find the variances of these two estimates.
Since the variance of a sample mean is o'>/n, we compute o:

o’ = E(X*) —[EX)T

1 1 2
:/.Xz +axdx—ai

1 2 9
1 o?
3 9
Thus, the variance of the method of moments estimate is

_ — 3-=a
Var(@) =9 Var(X) =

The exact variance of the mle, §, cannot be computed in closed form, so we approxi-
mate it by the asymptotic variance,

Var(&) ~ T(o{)

and then compare this asymptotic variance to the variance of @. The ratio of the former
to the latter is called the asymptotic relative efficiency. By definition,

5 2
I(x) = E [— log f(x|a)]
Ja
1 2
:/ X <1+ax> dx
1 (1 4+ ax)? 2
log<1+a) —2a
l—«a

= o , —l<a<l,aa#0

= —, a:o
3

The asymptotic relative efficiency is thus (for o £ 0)

Var(@)  2a° 1
~N 2 1
Var(@) 33—« log ( + a) o

1l -«
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The following table gives this efficiency for various values of « between 0 and 1;
symmetry would yield the values between —1 and 0.

o Efficiency

1.0
997
.989
975
953
931
.878
817
127
582
464

N r LD~

N
G

As o tends to 1, the efficiency tends to 0. Thus, the mle is not much better than the
method of moments estimate for « close to 0 but does increasingly better as « tends
to 1.

It must be kept in mind that we used the asymptotic variance of the mle, so we
calculated an asymptotic relative efficiency, viewing this as an approximation to the
actual relative efficiency. To gain more precise information for a given sample size,
a simulation of the sampling distribution of the mle could be conducted. This might
be especially interesting for « = 1, a case for which the formula for the asymptotic
variance given above does not appear to make much sense. With a simulation study,
the behavior of the bias as n and « vary could be analyzed (we showed that the mle
is asymptotically unbiased, but there may be bias for a finite sample size), and the
actual distribution could be compared to the approximating normal. ]

In searching for an optimal estimate, we might ask whether there is a lower bound
for the MSE of any estimate. If such a lower bound existed, it would function as a
benchmark against which estimates could be compared. If an estimate achieved this
lower bound, we would know that it could not be improved upon. In the case in which
the estimate is unbiased, the Cramér-Rao inequality provides such a lower bound. We
now state and prove the Cramér-Rao inequality.

THEOREM A  Cramér-Rao Inequality

Let Xy, ..., X, be i.i.d. with density function f(x|6). Let T = t(Xy, ..., X,)
be an unbiased estimate of 6. Then, under smoothness assumptions on f(x|6),

1
Var(T) > T(Q)
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Proof
Let

"9
Z=)  ozlog f(Xilf)
i=1

ad
_ & g e)
£ £(Xi10)

In Section 8.5.2, we showed that £(Z) = 0. Because the correlation coefficient
of Z and T is less than or equal to 1 in absolute value

Cov*(Z, T) < Var(Z)Var(T)
It was also shown in Section 8.5.2 that
Var [880 log f(X|9)] =1(9)
Therefore,
Var(Z) = nl(0)

The proof will be completed by showing that Cov(Z, T) = 1. Since Z has
mean 0,

Cov(Z,T) = E(ZT)

0]
n o fxil0) |
= /... 99 , :
_/ /t(m, cevs Xn) 2 Galo) ]Ul f(x;10) dx;

Noting that

)
n —f(xl|9) n 8 "
907 " ° N |
f(xl|9) = f(lee) 90 l];[lf(xl|9)

=l

we rewrite the expression for the covariance of Z and T as

Cov(Z, T) =/-.-/t(xl,...,x,,)%Hf(xiw) dx;
i=1

8 n
= %/"'/t(xlv-~-’xn):i|;[1f(xi|9) dx;

= iE(T)— i(9)—1
T 90 T 0T

which proves the inequality. [Note the interchange of differentiation and integra-
tion that must be justified by the smoothness assumptions on f(x[6).] ]
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EXAMPLE B

8.7.1

Theorem A gives a lower bound on the variance of any unbiased estimate. An
unbiased estimate whose variance achieves this lower bound is said to be efficient.
Since the asymptotic variance of a maximum likelihood estimate is equal to the
lower bound, maximum likelihood estimates are said to be asymptotically efficient.
For a finite sample size, however, a maximum likelihood estimate may not be ef-
ficient, and maximum likelihood estimates are not the only asymptotically efficient
estimates.

Poisson Distribution
In Example B in Section 8.5.3, we found that for the Poisson distribution

I(x) = !
A
Therefore, by Theorem A, for any unbiased estimate 7' of A, based on a sample of

independent Poisson random variables, X1, ..., X,,,
A
Var(T) > —
n

The mle of A was found tobe X = S/n, where § = X; +- - -+ X,,. Since S follows a
Poisson distribution with parameter nA, Var(S) = nA and Var(X) = A/n. Therefore,
X attains the Cramér-Rao lower bound, and we know that no unbiased estimator of A
can have a smaller variance. In this sense, X is optimal for the Poisson distribution.
But note that the theorem does not preclude the possibility that there is a biased
estimator of A that has a smaller mean squared error than X does. ]

An Example: The Negative Binomial Distribution

The Poisson distribution is often the first model considered for random counts; it
has the property that the mean of the distribution is equal to the variance. When it is
found that the variance of the counts is substantially larger than the mean, the negative
binomial distribution is sometimes instead considered as a model. We consider a
reparametrization and generalization of the negative binomial distribution introduced
in Section 2.1.3, which is a discrete distribution on the nonnegative integers with a
frequency function depending on the parameters m and k:

m\*Tk+x) [ m \"
.f(x|m,k)=<1+Z) x!T (k) <m+k>

The mean and variance of the negative binomial distribution can be shown
to be

n=m
2
2
o =m-+ —
k
It is apparent that this distribution is overdispersed (0> > ) relative to the Poisson.
We will not derive the mean and variance. (They are most easily obtained by using
moment-generating functions.)
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The negative binomial distribution can be used as a model in several cases:

* Ifk is an integer, the distribution of the number of successes up to the kth failure in a
sequence of independent Bernoulli trials with probability of success p =m /(m + k)
is negative binomial.

» Suppose that A is a random variable following a gamma distribution and that for A,
a given value of A, X follows a Poisson distribution with mean A. It can be shown
that the unconditional distribution of X is negative binomial. Thus, for situations in
which the rate varies randomly over time or space, the negative binomial distribution
might tentatively be considered as a model.

* The negative binomial distribution also arises with a particular type of clustering.
Suppose that counts of colonies, or clusters, follow a Poisson distribution and that
each colony has a random number of individuals. If the probability distribution
of the number of individuals per colony is of a particular form (the logarithmic
series distribution), it can be shown that the distribution of counts of individuals is
negative binomial. The negative binomial distribution might be a plausible model
for the distribution of insect counts if the insects hatch from depositions, or clumps,
of larvae.

* The negative binomial distribution can be applied to model population size in a
certain birth/death process, the assumption being that the birth rate and death rate
per individual are constant and that there is a constant rate of immigration.

Anscombe (1950) discusses estimation of the parameters m and k and compares
the efficiencies of several methods of estimation. The simplest method is the method
of moments; from the relations of m and k to x and o' given previously, the method
of moments estimates of m and k are

m=X
. X?
k - =
62 —-X

Another relatively simple method of estimation of m and k is based on the number

of zeros. The probability of the count being zero is

me (123

If m is estimated by the sample mean and there are n, zeros out of a sample size of
n, then k is estimated by k, where k satisfies

l’l()_ 1+Y
no k

Although the solution cannot be obtained in closed form, it is not difficult to find by
iteration.

Figure 8.11, from Anscombe (1950), shows the asymptotic efficiencies of the two
methods of estimation of the negative binomial parameters relative to the maximum
likelihood estimate. In the figure, the method of moments is method 1 and the method
based on the number of zeros is method 2. Method 2 is quite efficient when the mean
is small—that is, when there are a large number of zeros. Method 1 becomes more
efficient as k increases.

—k
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EXAMPLE A
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FIGURE 8.11 Asymptotic efficiencies of estimates of negative binomial parameters.

The maximum likelihood estimate is asymptotically efficient but is somewhat
more difficult to compute. The equations will not be written out here. Bliss and Fisher
(1953) discuss computational methods and give several examples. The maximum

likelihood estimate of m is the sample mean, but that of & is the solution of a nonlinear
equation.

Insect Counts

Let us consider an example from Bliss and Fisher (1953). From each of 6 apple trees
in an orchard that was sprayed, 25 leaves were selected. On each of the leaves, the
number of adult female red mites was counted. Intuitively, we might conclude that
this situation was too heterogeneous for a Poisson model to fit; the rates of infestation
might be different on different trees and at different locations on the same tree.
The following table shows the observed counts and the expected counts from fitting

Poisson and negative binomial distributions. The mle’s for k and m were k = 1.025
and m = 1.146.

Number Observed Poisson Negative Binomial
per Leaf Count Distribution Distribution

0 70 47.7 69.5

1 38 54.6 37.6

2 17 31.3 20.1

3 10 12.0 10.7

4 9 3.4 5.7

5 3 75 3.0

6 2 .15 1.6

7 1 .03 .85

8+ 0 .00 .95
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Casual inspection of this table makes it clear that the Poisson does not fit; there
are many more small and large counts observed than are expected for a Poisson
distribution. [ ]

A recursive relation is useful in fitting the negative binomial distribution:

e (1e)

k+n—1 m
Pn = Pn—1

n

8.8 Sufficiency

This section introduces the concept of sufficiency and some of its theoretical impli-
cations. Suppose that X, ..., X, is a sample from a probability distribution with the
density or frequency function f (x|6). The concept of sufficiency arises as an attempt
to answer the following question: Is there a statistic, a function 7' (X4, ..., X,), that
contains all the information in the sample about 67 If so, a reduction of the original
data to this statistic without loss of information is possible. For example, consider
a sequence of independent Bernoulli trials with unknown probability of success, 6.
We may have the intuitive feeling that the total number of successes contains all
the information about 6 that there is in the sample, that the order in which the suc-
cesses occurred, for example, does not give any additional information. The following
definition formalizes this idea.

DEFINITION

A statistic T (X, ..., X,) is said to be sufficient for 6 if the conditional dis-
tribution of X, ..., X,, given T = ¢, does not depend on 6 for any value
of r. | |

In other words, given the value of T, which is called a sufficient statistic, we can
gain no more knowledge about 6 from knowing more about the probability distribution
of Xy, ..., X,,. (Formally, we could envision keeping only 7 and throwing away all
the X; without any loss of information. Informally, and more realistically, this would
make no sense at all. The values of the X; might indicate that the model did not fit or
that something was fishy about the data. What would you think, for example, if you
saw 50 ones followed by 50 zeros in a sequence of supposedly independent Bernoulli
trials?)
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EXAMPLE A

8.8.1

Let Xi,..., X, be a sequence of independent Bernoulli random variables with
P(X; =1) =0. We will verify that T = )", X; is sufficient for 6.

PXi=x1,....,X,=x,,T=1)
P(T =1)

PXy=x1,.... X, =x,|T =1) =

Bearing in mind that the X; can take on only the values Os and 1s, the probability
in the numerator is the probability that some particular set of ¢ X; are equal to 1s
and the other n — ¢ are Os. Since the X; are independent, the probability of this is
the product of the marginal probabilities, or (1 — 6)"~'. To find the denominator
note that the distribution of T, the total number of ones, is binomial with # trials and
probability of success 6. The ratio in question is thus

o' (1 — )" 1

Nort—oy—r ("
(yra=or ()

The conditional distribution thus does not involve 8 at all. Given the total number of
ones, the probability that they occur on any particular set of ¢ trials is the same for
any value of 6 so that set of trials contains no additional information about 6. ]

A Factorization Theorem

The preceding definition of sufficiency is hard to work with, because it does not
indicate how to go about finding a sufficient statistic, and given a candidate statistic,
T, it would typically be very hard to conclude whether it was sufficient because of
the difficulty in evaluating the conditional distribution. The following factorization
theorem provides a convenient means of identifying sufficient statistics.

THEOREM A

A necessary and sufficient condition for 7'(Xy, ..., X,) to be sufficient for a
parameter 6 is that the joint probability function (density function or frequency
function) factors in the form

fxy, .o, x,10) = glT (x4, ..., x,), 010 (x1, ..., X))
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Proof

We give a proof for the discrete case. (The proof for the general case is more
subtle and requires regularity conditions, but the basic ideas are the same.) First,
suppose that the frequency function factors as given in the theorem. To simplify

notation, we will let X denote (X1, ..., X,) and x denote (xi, ..., x,). We have
PT=0= ) PX=x)
T (x)=t
=g(t,0) > h(Xx
T(x)=t

Here the notation indicates that the sum is over all x such that 7' (x) = ¢. We then

have
PX=x,T=
_ h®
Y ™
T(X)=t

This conditional distribution does not depend on 6, as was to be shown.
To show that the conclusion holds in the other direction, suppose that the
conditional distribution of X given 7 is independent of 6. Let

8(t,0) = P(T =110)
h(x) = PX=x|T =1t)
We then have
PX=x|0)=P(T =t|0)PX=x|T =1)
= g(, 0)h(x)

as was to be shown. [ |

We can demonstrate the utility of Theorem A by applying it to some examples.
More examples are included in the problems at the end of this chapter.

EXAMPLE A Consider a sequence of independent Bernoulli random variables, X1, ..., X,, where
PX;=x)=0"1-0)"",  x=0orx=1
then .
i) =JJeva—-e'

i=1

= OTi=i (] — )" Fi=mhi

n

0 E':l)ﬁ n
= <m> (1-9)
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We see that f(x|0) depends only on xj, x5, ..., x, through the sufficient statistic
t =73, x; and f(x|0) is of the form g(>_"_, x;, 0)h(x), where h(x) = 1 and
9 t
t,0) = —— 1—-0)"
g(1.0) (1 — 9) (1-6) .

EXAMPLE B Consider arandom sample from a normal distribution that has an unknown mean and
variance. We have

n 1 r _1

x|, o) = exp | =——

f (I, 0) Eam P |52

(x;i — M)z}

1 [—1 ,

1 -1 (&, " ,
 onQm)n/? exXp 202 <;xi _2M;xi +np )1

This expression is just a function of > /_, x; and > ;_, x?, which are therefore
sufficient statistics. In this example we have a two-dimensional sufficient statistic.
Although Theorem A was stated explicitly for a one-dimensional sufficient statistic,
the multidimensional analogue holds also. [ |

Because the likelihood,
f(-xla ey Xps 9) = g[T(-xlv oo 7-xn)a e]h(-xls .o a-xn)

it depends only on the data through T (x4, ..., x,). The maximum likelihood esti-
mate is found by maximizing g[7T (x, ..., x,), #]. In Example A, the likelihood is a
function of 7 = ), x;, and the maximum likelihood estimate is 0=t/n.

Similarly, in a Bayesian framework, the posterior distribution of 0 is proportional
to the product of the prior distribution of 6 and the likelihood. As a function of 6, the
posterior distribution thus depends only on the data through g[7 (x1, ..., x,), ]—the
posterior probability of 6 is the same for all {x, ..., x,} which have a common value
of T(xy,...,x,). The sufficient statistic carries all the information about 6 that is
contained in the data x, x5, ..., x,.

A study of the properties of probability distributions that have sufficient statistics
of the same dimension as the parameter space regardless of sample size led to the
development of what is called the exponential family of probability distributions.
Many common distributions, including the normal, the binomial, the Poisson, and
the gamma, are members of this family. One-parameter members of the exponential
family have density or frequency functions of the form

f(x]0) =explc(@)T (x) +d©O) + S(x)], x €A
=0, xgA
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where the set A does not depend on 6. Suppose that X, ..., X,, is a sample from a
member of the exponential family; the joint probability function is

n

fx10) = [ exple® T (x)) + d(©) + S(x:)]

i=1
=exp |c(0) > T(x)+ nd(@)] exp [Z S(x,»)]
i=1 i=1

From this result, it is apparent by the factorization theorem that ) ._, 7'(X;) is a
sufficient statistic.

The frequency function of the Bernoulli distribution is
P(X =x) =61 —0)'*, x=0orx =1
0
=exp |xlog 1—¢ + log(1 —90)

This is a member of the exponential family with 7' (x) = x, and we have already seen
that >°"_, X;, is a sufficient statistic for a sample from the Bernoulli distribution. m

A k-parameter member of the exponential family has a density or frequency
function of the form

k
fx10) =exp [ > a@OT(x)+d@)+Sx)|. xeA

i=1

=0, x¢dA

where the set A does not depend on 6.

The normal distribution is of this form. A great deal of theoretical work has
centered around the exponential family; further discussion of this family can be found
in Bickel and Doksum (2001).

We conclude this section with the following corollary of Theorem A.

COROLLARY A
If T is sufficient for 6, the maximum likelihood estimate is a function of 7.

Proof

From Theorem A, the likelihood is g(7', 6)h(x), which depends on 6 only through
T. To maximize this quantity, we need only maximize g(7, 6). ™
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8.8.2

Corollary A and the Rao-Blackwell theorem of the next section may be interpreted
as giving some theoretical support to the use of maximum likelihood estimates.

The Rao-Blackwell Theorem

In the preceding section, we argued for the importance of sufficient statistics on essen-
tially qualitative grounds. The Rao-Blackwell theorem gives a quantitative rationale
for basing an estimator of a parameter 6 on a sufficient statistic if one exists.

THEOREM A Rao-Blackwell Theorem

Let  be an estimator of @ with E (%) < oo for all 8. Suppose that 7 is sufficient
for 0, and let & = E(0|T). Then, for all 6,

E@ —0)> < E® —0)*

The inequality is strict unless § = 6.

Proof

We first note that, from the property of iterated conditional expectation
(Theorem A of Section 4.4.1),

E@) = E[E@|T)] = E®)

Therefore, to compare the mean squared error of the two estimators, we need
only compare their variances. From Theorem B of Section 4.4.1, we have

Var(d) = Var[E(0|T)] + E[Var(8|T)]
or
Var(f) = Var(d) + E[Var(|T)]

Thus, Var(d) > Var(d) unless Var(8|T) = 0, which is the case only if fis a
function of 7', which would imply § = 6. -

Since E (8| T) is a function of the sufficient statistic 7, the Rao-Blackwell theorem
gives a strong rationale for basing estimators on sufficient statistics if they exist. If an
estimator is not a function of a sufficient statistic, it can be improved.

Suppose that there are two estimates, §; and 0,, having the same expectation.
Assuming that a sufficient statistic 7" exists, we may construct two other estimates, 0,
and 65, by conditioning on T. The theory we have developed so far gives no clues as
to which one of these two is better. If the probability distribution of T has the property
called completeness, 6, and 6, are identical, by a theorem of Lehmann and Scheffé.
We will not define completeness or pursue this topic further; Lehmann and Casella
(1998) and Bickel and Doksum (2001) discuss this concept.
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Concluding Remarks

Certain key ideas first introduced in the context of survey sampling in Chapter 7 have
recurred in this chapter. We have viewed an estimate as a random variable having a
probability distribution called its sampling distribution. In Chapter 7, the estimate was
of a parameter, such as the mean, of a finite population; in this chapter, the estimate
was of a parameter of a probability distribution. In both cases, characteristics of
the sampling distribution, such as the bias and the variance and the large sample
approximate form, have been of interest. In both chapters, we studied confidence
intervals for the true value of the unknown parameter. The method of propagation of
error, or linearization, has been a useful tool in both chapters. These key ideas will
be important in other contexts in later chapters as well.

Important concepts and techniques in estimation theory were introduced in this
chapter. We discussed two general methods of estimation—the method of moments
and the method of maximum likelihood. The latter especially has great general utility
in statistics. We developed and applied some approximate distribution theory for
maximum likelihood estimates. Other theoretical developments included the concept
of efficiency, the Cramér-Rao lower bound, and the concept of sufficiency and some
of its consequences.

Bayesian inference was introduced in this chapter. The point of view contrasts
rather sharply with that of frequentist inference in that the Bayesian formalism allows
uncertainty statements about parameter values to be probabilistic, for example,“After
seeing the data, the probability is 95% that 1.8 < 6 < 6.3.” In frequentist inference,
6 is not a random variable, and a statement like this would literally make no sense; it
would be replaced by, “A 95% confidence interval for 6 is [1.8, 6.3],” perhaps followed
by a long convoluted explication of the meaning of a confidence interval. Despite this
apparently sharp philosophical difference, Bayesian and frequentist procedures have a
great deal in common and typically lead to similar conclusions. Despite the distinction
between the two statements above, the statements may well mean essentially the
same thing operationally to a practitioner who has analyzed the data. The likelihood
function is fundamental for both frequentist and Bayesian inference. In an application,
the choice of a model, that is, the choice of a likelihood function, will typically
be much more important than whether on subsequently multiplies it be a prior or
just maximizes it. This is especially true if flat priors are used; in fact, one might
regard a flat prior as a device that allows the likelihood to be treated as a probability
density.

In this chapter, we introduced the bootstrap method for assessing the variability
of an estimate. Such uses of simulation have become increasingly widespread as
computers have become faster and cheaper; the bootstrap as a general method has
been developed only quite recently and has rapidly become one of the most important
statistical tools. We will see other situations in which the bootstrap is useful in later
chapters. Efron and Tibshirani (1993) give an excellent introduction to the theory and
applications of the bootstrap.

The context in which we have introduced the bootstrap is often referred to as the
parametric bootstrap. The nonparametric bootstrap will be introduced in Chapter 10.
The parametric bootstrap can be thought about somewhat abstractly in the following
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way. We have data x that we regard as being generated by a probability distribution
F(x]|0), which depends on a parameter 6. We wish to know Eh(X, #) for some
function & (). For example, if 6 itself is estimated from the data as é(x) and h(X, 0) =
[é (X) — 012, then Eh(X, ) is the mean square error of the estimate. As another
example, if

1if|§(X) — 6] > A
0 otherwise

h(X,0) = {

then Eh(X, 6) is the probability that 16(X) — 6| > A. We realize that if  were known,
we could use the computer to generate independent random variables X, X, ..., Xp
from F(x]|60) and then appeal to the law of large numbers:

1B
ER(X,0) ~ — 2_1: h(X;, 0)

This approximation could be made arbitrarily precise by choosing B sufficiently large.
The parametric bootstrap principle is to perform this Monte Carlo simulation using &
in place of the unknown —that is, using F' (x|9) to generate the X;. It is difficult to
give a concise answer to the natural question: How much error is introduced by using
6 in place of #? The answer depends on the continuity of EA(X, #) as a function of
0—if small changes in 6 can give rise to large changes in Eh(X, 0), the parametric
bootstrap will not work well.

8.10 Problems

1. The following table gives the observed counts in 1-second intervals for
Berkson’s data (Section 8.2). What are the expected counts from a Poisson dis-
tribution? Do they match the observed counts?

n Observed
0 5267
1 4436
2 1800
3 534
4 111
5+ 21

2. The Poisson distribution has been used by traffic engineers as a model for light
traffic, based on the rationale that if the rate is approximately constant and the
traffic is light (so the individual cars move independently of each other), the
distribution of counts of cars in a given time interval or space area should be nearly
Poisson (Gerlough and Schuhl 1955). The following table shows the number of
right turns during 300 3-min intervals at a specific intersection. Fit a Poisson
distribution. Comment on the fit by comparing observed and expected counts. It
is useful to know that the 300 intervals were distributed over various hours of the
day and various days of the week.
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n Frequency
0 14
1 30
2 36
3 68
4 43
5 43
6 30
7 14
8 10
9 6
10 4
11 1
12 1
13+ 0

313

3. One of the earliest applications of the Poisson distribution was made by Student
(1907) in studying errors made in counting yeast cells or blood corpuscles with
a haemacytometer. In this study, yeast cells were killed and mixed with water
and gelatin; the mixture was then spread on a glass and allowed to cool. Four
different concentrations were used. Counts were made on 400 squares, and the

data are summarized in the following table:

Number Concentration Concentration Concentration  Concentration

of Cells 1 2 3 4
0 213 103 75 0
1 128 143 103 20
2 37 98 121 43
3 18 42 54 53
4 3 8 30 86
5 1 4 13 70
6 0 2 2 54
7 0 0 1 37
8 0 0 0 18
9 0 0 1 10

10 0 0 0 5
11 0 0 0 2
12 0 0 0 2

a. Estimate the parameter A for each of the four sets of data.
b. Find an approximate 95% confidence interval for each estimate.
c. Compare observed and expected counts.

4. Suppose that X is a discrete random variable with

2
P(X=0)= 0
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1
P(X=1)= 59

2
P(X=2)= g(1—9)

P(X =3) = %(1—9)

where 0 < 6 < 1 is a parameter. The following 10 independent observations
were taken from such a distribution: (3,0,2,1,3,2,1,0,2, 1).

o0 T

. Find the method of moments estimate of 6.

. Find an approximate standard error for your estimate.

. What is the maximum likelihood estimate of 6?

. What is an approximate standard error of the maximum likelihood estimate?
. If the prior distribution of ® is uniform on [0, 1], what is the posterior density?

Plot it. What is the mode of the posterior?

5. Suppose that X is a discrete random variable with P(X = 1) = 6 and P(X = 2)
= 1 —60. Three independent observations of X are made: x; = 1, x, =2, x3 = 2.

a. Find the method of moments estimate of 6.
b.
c
d

What is the likelihood function?

. What is the maximum likelihood estimate of 6?
. If ® has a prior distribution that is uniform on [0, 1], what is its posterior

density?

6. Suppose that X ~ bin(n, p).

a.
b.
c.

Show that the mle of p is p = X/n.
Show that mle of part (a) attains the Cramér-Rao lower bound.
If n =10 and X =5, plot the log likelihood function.

7. Suppose that X follows a geometric distribution,

P(X =k)=p(l—p*!

and assume an i.i.d. sample of size n.

e T

. Find the method of moments estimate of p.

. Find the mle of p.

. Find the asymptotic variance of the mle.

. Let p have a uniform prior distribution on [0, 1]. What is the posterior distri-

bution of p? What is the posterior mean?

8. In an ecological study of the feeding behavior of birds, the number of hops
between flights was counted for several birds. For the following data, (a) fit a
geometric distribution, (b) find an approximate 95% confidence interval for p, (c)
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examine goodness of fit. (d) If a uniform prior is used for p, what is the posterior
distribution and what are the posterior mean and standard deviation?

Number of Hops Frequency
1 48
2 31
3 20
4 9
5 6
6 5
7 4
8 2
9 1

10 1
11 2
12 1

. How would you respond to the following argument? This talk of sampling dis-

tributions is ridiculous! Consider Example A of Section 8.4. The experimenter
found the mean number of fibers to be 24.9. How can this be a “random variable”
with an associated “probability distribution” when it’s just a number? The author
of this book is guilty of deliberate mystification!

Use the normal approximation of the Poisson distribution to sketch the approxi-
mate sampling distribution of A of Example A of Section 8.4. According to this
approximation, what is P (|Ag — )A\| > §) for§ = .5,1, 1.5, 2, and 2.5, where A,
denotes the true value of A?

In Example A of Section 8.4, we used knowledge of the exact form of the sampling
distribution of A to estimate its standard error by

~

A

s; =1/—

This was arrived at by realizing that Y X; follows a Poisson distribution with
parameter niy. Now suppose we hadn’t realized this but had used the bootstrap,
letting the computer do our work for us by generating B samples of size n = 23
of Poisson random variables with parameter A = 24.9, forming the mle of A from
each sample, and then finally computing the standard deviation of the resulting
collection of estimates and taking this as an estimate of the standard error of A.
Argue that as B — 00, the standard error estimated in this way will tend to s;.

Suppose that you had to choose either the method of moments estimates
or the maximum likelihood estimates in Example C of Section 8.4 and C of
Section 8.5. Which would you choose and why?

In Exainple D of Section 8.4, the method of moments estimate was found to be
& = 3X. In this problem, you will consider the sampling distribution of &.

a. Show that E (&) = a—that is, that the estimate is unbiased.
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14.

15.

16.

17.

18.

b. Show that Var(&) = (3 — «?)/n. [Hint: What is Var(X)?]

c. Use the central limit theorem to deduce a normal approximation to the sam-
pling distribution of &. According to this approximation, ifn = 25 and o« = 0,
what is the P(|&| > .5)?

In Example C of Section 8.5, how could you use the bootstrap to estimate the
following measures of the accuracy of &: (a) P (|& — ap| > .05), (b) E(|& — apl),
(c) that number A such that P(|& — | > A) = .5.

The upper quartile of a distribution with cumulative distribution F is that point
q.2s such that F (g 25) = .75. For a gamma distribution, the upper quartile depends
on « and A, so denote it as g («, A). If a gamma distribution is fit to data as in
Example C of Section 8.5 and the parameters « and A are estimated by & and A,
the upper quartile could then be estimated by § = ¢(&, 4). Explain how to use
the bootstrap to estimate the standard error of §.

Consider an i.i.d. sample of random variables with density function

|x|

1
fxlo) = S —exp (—;)

a. Find the method of moments estimate of o .
b. Find the maximum likelihood estimate of o .
c¢. Find the asymptotic variance of the mle.
d. Find a sufficient statistic for o.

Suppose that Xy, X, ..., X, are i.i.d. random variables on the interval [0, 1]
with the density function

I'Qaw)
I'(a)?

fxle) = [x(1 —x)]*"
where @ > 0 is a parameter to be estimated from the sample. It can be shown
that

1
E(X) =
1

Var(X) = m

. How does the shape of the density depend on «?

. How can the method of moments be used to estimate «?
. What equation does the mle of « satisfy?

. What is the asymptotic variance of the mle?

. Find a sufficient statistic for o.

o0 T

Suppose that X, X, ..., X, are i.i.d. random variables on the interval [0, 1]
with the density function

_ F(3Ol) a—1 _ 200—1
f(xla)—4r(a)r(2a)x (I—=x)

where o > 0 is a parameter to be estimated from the sample. It can be shown
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that
E(X) = !
3

Var(X) = ——
9Ba + 1)

a. How could the method of moments be used to estimate «?
b. What equation does the mle of « satisfy?

¢. What is the asymptotic variance of the mle?

d. Find a sufficient statistic for «.

Suppose that X, X, ..., X, are i.i.d. N(u, o).

a. If u is known, what is the mle of o?

b. If o is known, what is the mle of ©?

¢. In the case above (o known), does any other unbiased estimate of p have
smaller variance?

Suppose that X, X5, ..., Xzs_are iid. N(u, 0?), where u = 0 and 0 = 10. Plot
the sampling distributions of X and 2.

Suppose that X, X5, ..., X, are i.i.d. with density function
f(x]0) = e 77, x>0

and f(x|0) = 0 otherwise.

a. Find the method of moments estimate of 6.

b. Find the mle of 6. (Hint: Be careful, and don’t differentiate before thinking.
For what values of 6 is the likelihood positive?)

c. Find a sufficient statistic for 6.

The Weibull distribution was defined in Problem 67 of Chapter 2. This distribution
is sometimes fit to lifetimes. Describe how to fit this distribution to data and how
to find approximate standard errors of the parameter estimates.

A company has manufactured certain objects and has printed a serial number
on each manufactured object. The serial numbers start at 1 and end at N, where
N is the number of objects that have been manufactured. One of these objects
is selected at random, and the serial number of that object is 888. What is the
method of moments estimate of N? What is the mle of N?

Find a very new shiny penny. Hold it on its edge and spin it. Do this 20 times
and count the number of times it comes to rest heads up. Letting 7= denote the
probability of a head, graph the log likelihood of 7. Next, repeat the experiment
in a slightly different way: This time spin the coin until 10 heads come up. Again,
graph the log likelihood of .

If a thumbtack is tossed in the air, it can come to rest on the ground with either
the point up or the point touching the ground. Find a thumbtack. Before doing
any experiment, what do you think 7, the probability of it landing point up, is?
Next, toss the thumbtack 20 times and graph the log likelihood of 7. Then do
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26.

27.

28.

29.

30.

31.

32.

another experiment: Toss the thumbtack until it lands point up 5 times, and graph
the log likelihood of 7 based on this experiment.

Find and graph the posterior distribution arising from a uniform prior on .
Find the posterior mean and standard deviation and compare the posterior with
a normal distribution with that mean and standard deviation. Finally, toss the
thumbtack 20 more times and compare the posterior distribution based on all 40
tosses to that based on the first 20.

In an effort to determine the size of an animal population, 100 animals are captured
and tagged. Some time later, another 50 animals are captured, and it is found
that 20 of them are tagged. How would you estimate the population size? What
assumptions about the capture/recapture process do you need to make? (See
Example I of Section 1.4.2.)

Suppose that certain electronic components have lifetimes that are exponentially
distributed: f(t|t) = (1/7)exp(—t/7),t > 0. Five new components are put on
test, the first one fails at 100 days, and no further observations are recorded.

a. What is the likelihood function of 7?

b. What is the mle of 7?

¢. What is the sampling distribution of the mle?
d. What is the standard error of the mle?

(Hint: See Example A of Section 3.7.)

Why do the intervals in the left panel of Figure 8.8 have different centers? Why
do they have different lengths?

Are the estimates of 0% at the centers of the confidence intervals shown in the
right panel of Figure 8.87 Why are some intervals so short and others so long? For
which of the samples that produced these confidence intervals was 6% smallest?

The exponential distribution is f(x; ) = Ae™* and E(X) = A~'. The cumula-
tive distribution function is F(x) = P(X < x) = 1 — e~**. Three observations
are made by an instrument that reports x; = 5 and x, = 3, but xj3 is too large for
the instrument to measure and it reports only that x3 > 10. (The largest value the
instrument can measure is 10.0.)

a. What is the likelihood function?
b. What is the mle of 1?

George spins a coin three times and observes no heads. He then gives the coin to
Hilary. She spins it until the first head occurs, and ends up spinning it four times
total. Let 6 denote the probability the coin comes up heads.

a. What is the likelihood of 6?
b. What is the MLE of 6?

The following 16 numbers came from normal random number generator on a
computer:

5.3299 4.2537 3.1502 3.7032 1.6070 6.3923 3.1181

6.5941 3.5281 4.7433 0.1077 1.5977 5.4920 1.7220
4.1547 2.2799
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a. What would you guess the mean and variance (1« and o2) of the generating
normal distribution were?

b. Give 90%, 95%, and 99% confidence intervals for p and 0.

c. Give 90%, 95%, and 99% confidence intervals for o .

d. How much larger a sample do you think you would need to halve the length
of the confidence interval for 1?

Suppose that X, X,, ..., X, are i.i.d. N(u, o?), where 1 and o are unknown.
How should the constant ¢ be chosen so that the interval (—oo, X + ¢) is a 95%
confidence interval for w; that is, ¢ should be chosen so that P(—oco < u <
X +c¢) = .95.

Suppose that Xy, X5, ..., X, are i.i.d. N(uo, 0¢) and u and o are estimated by
the method of maximum likelihood, with resulting estimates /& and 2. Suppose
the bootstrap is used to estimate the sampling distribution of f&.

a. Explain why the bootstrap estimate of the distribution of & is N (ft, i—z).

b. Explain why the bootstrap estimate of the distribution of &t — g is N (0, ‘}72).
¢. According to the result of the previous part, what is the form of the bootstrap

confidence interval for , and how does it compare to the exact confidence
interval based on the ¢ distribution?

(Bootstrap in Example A of Section 8.5.1) Let U}, U,, . .., Uy be independent
uniformly distributed random variables. Let X, equal the number of U; less than
331, X, equal the number between .331 and .820, and X5 equal the number
greater than .820. Why is the joint distribution of X, X,, and X3 multinomial
with probabilities .331, .489, and .180 and n = 1029?

How do the approximate 90% confidence intervals in Example E of Section 8.5.3
compare to those that would be obtained approximating the sampling distributions
of & and A by normal distributions with standard deviations given by s4 and s;
as in Example C of Section 8.5?

Using the notation of Section 8.5.3, suppose that 6 and 6 are lower and upper
quantiles of the distribution of 6*. Show that the bootstrap confidence interval
for 6 can be written as (20 — 6, 26 — 6).

Continuing Problem 37, show that if the sampling distribution of 6* is symmetric
about 0, then the bootstrap confidence interval is (6, 0).

In Section 8.5.3, the bootstrap confidence interval was derived from consideration
of the sampling distribution of § —6,. Suppose that we had started with considering
the distribution of # /6. How would the argument have proceeded, and would the
bootstrap interval that was finally arrived at have been different?

In Example A of Section 8.5.1, how could you use the bootstrap to estimate the
following measures of the accuracy of 6: (a) P (|60 — 6y| > .01), (b) E(|60 — 6y]),
(c) that number A such that P(|6 — 6y| > A) = .57

What are the relative efficiencies of the method of moments and maximum like-
lihood estimates of « and A in Example C of Section 8.4 and Example C of
Section 8.5?
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42,
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44.

45.

The file gamma - ray contains a small quantity of data collected from the Comp-
ton Gamma Ray Observatory, a satellite launched by NASA in 1991
(http://cossc.gsfc.nasa.gov/). For each of 100 sequential time
intervals of variable lengths (given in seconds), the number of gamma rays
originating in a particular area of the sky was recorded. Assuming a model
that the arrival times are a Poisson process with constant emission rate (A =
events per second), estimate A. What is the estimated standard error? How might
you informally check the assumption that the emission rate is constant? What is
the posterior distribution of A if an improper gamma prior is used?

The file gamma-arrivals contains another set of gamma-ray data, this one
consisting of the times between arrivals (interarrival times) of 3,935 photons
(units are seconds).

a. Make a histogram of the interarrival times. Does it appear that a gamma
distribution would be a plausible model?

b. Fit the parameters by the method of moments and by maximum likelihood.
How do the estimates compare?

c. Plot the two fitted gamma densities on top of the histogram. Do the fits look
reasonable?

d. Forboth maximum likelihood and the method of moments, use the bootstrap to
estimate the standard errors of the parameter estimates. How do the estimated
standard errors of the two methods compare?

e. For both maximum likelihood and the method of moments, use the bootstrap
to form approximate confidence intervals for the parameters. How do the
confidence intervals for the two methods compare?

f. Is the interarrival time distribution consistent with a Poisson process model
for the arrival times?

The file body t emp contains normal body temperature readings (degrees Fahren-
heit) and heart rates (beats per minute) of 65 males (coded by 1) and 65 females
(coded by 2) from Shoemaker (1996). Assuming that the population distributions
are normal (an assumption that will be investigated in a later chapter), estimate the
means and standard deviations of the males and females. Form 95% confidence
intervals for the means. Standard folklore is that the average body temperature is
98.6 degrees Fahrenheit. Does this appear to be the case?

A Random Walk Model for Chromatin. A human chromosome is a very large
molecule, about 2 or 3 centimeters long, containing 100 million base pairs (Mbp).
The cell nucleus, where the chromosome is contained, is in contrast only about a
thousandth of a centimeter in diameter. The chromosome is packed in a series of
coils, called chromatin, in association with special proteins (histones), forming
a string of microscopic beads. It is a mixture of DNA and protein. In the GO/G1
phase of the cell cycle, between mitosis and the onset of DNA replication, the
mitotic chromosomes diffuse into the interphase nucleus. At this stage, a number
of important processes related to chromosome function take place. For exam-
ple, DNA is made accessible for transcription and is duplicated, and repairs are
made of DNA strand breaks. By the time of the next mitosis, the chromosomes
have been duplicated. The complexity of these and other processes raises many


http://cossc.gsfc.nasa.gov/

8.10 Problems 321

questions about the large-scale spatial organization of chromosomes and how
this organization relates to cell function. Fundamentally, it is puzzling how these
processes can unfold in such a spatially restricted environment.

At a scale of about 1073 Mbp, the DNA forms a chromatin fiber about 30
nm in diameter; at a scale of about 10~! Mbp the chromatin may form loops.
Very little is known about the spatial organization beyond this scale. Various
models have been proposed, ranging from highly random to highly organized,
including irregularly folded fibers, giant loops, radial loop structures, systematic
organization to make the chromatin readily accessible to transcription and repli-
cation machinery, and stochastic configurations based on random walk models
for polymers.

A series of experiments (Sachs et al., 1995; Yokota et al., 1995) were con-
ducted to learn more about spatial organization on larger scales. Pairs of small
DNA sequences (size about 40 kbp) at specified locations on human chromo-
some 4 were flourescently labeled in a large number of cells. The distances
between the members of these pairs were then determined by flourescence mi-
croscopy. (The distances measured were actually two-dimensional distances be-
tween the projections of the paired locations onto a plane.) The empirical dis-
tribution of these distances provides information about the nature of large-scale
organization.

There has long been a tradition in chemistry of modeling the configurations
of polymers by the theory of random walks. As a consequence of such a model,
the two-dimensional distance should follow a Rayleigh distribution

r —r?
fro) = g2 &P (W)

Basically, the reason for this is as follows: The random walk model implies that
the joint distribution of the locations of the pairin R? is multivariate Gaussian; by
properties of the multivariate Gaussian, it can be shown the joint distribution of
the locations of the projections onto a plane is bivariate Gaussian. As in Example
A of Section 3.6.2 of the text, it can be shown that the distance between the points
follows a Rayleigh distribution.

In this exercise, you will fit the Rayleigh distribution to some of the experi-
mental results and examine the goodness of fit. The entire data set comprises 36
experiments in which the separation between the pairs of flourescently tagged
locations ranged from 10 Mbp to 192 Mbp. In each such experimental condi-
tion, about 100-200 measurements of two-dimensional distances were deter-
mined. This exercise will be concerned just with the data from three experiments
(short, medium, and long separation). The measurements from these experi-
mentsiscontainedinthe filesChromatin/short, Chromatin/medium,
Chromatin/long.

a. What is the maximum likelihood estimate of 6 for a sample from a Rayleigh
distribution?

b. What is the method of moments estimate?

c¢. What are the approximate variances of the mle and the method of moments
estimate?
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d. For each of the three experiments, plot the likelihood functions and find the
mle’s and their approximate variances.

e. Find the method of moments estimates and the approximate variances.

f. For each experiment, make a histogram (with unit area) of the measurements
and plot the fitted densities on top. Do the fits look reasonable? Is there any
appreciable difference between the maximum likelihood fits and the method
of moments fits?

g. Does there appear to be any relationship between your estimates and the
genomic separation of the points?

h. For one of the experiments, compare the asymptotic variances to the results
obtained from a parametric bootstrap. In order to do this, you will have to
generate random variables from a Rayleigh distribution with parameter 6.

Show that if X follows a Rayleigh distribution with 6 = 1,then Y = 60X
follows a Rayleigh distribution with parameter 6. Thus it is sufficient to figure
out how to generate random variables that are Rayleigh, & = 1. Show how
Proposition D of Section 2.3 of the text can be applied to accomplish this.

B = 100 bootstrap samples should suffice for this problem. Make a
histogram of the values of the 6*. Does the distribution appear roughly normal?
Do you think that the large sample theory can be reasonably applied here?
Compare the standard deviation calculated from the bootstrap to the standard
errors you found previously.

i. For one of the experiments, use the bootstrap to construct an approximate 95%
confidence interval for 6 using B = 1000 bootstrap samples. Compare this
interval to that obtained using large sample theory.

46. The data of this exercise were gathered as part of a study to estimate the population
size of the bowhead whale (Raftery and Zeh 1993). The statistical procedures
for estimating the population size along with an assessment of the variability of
the estimate were quite involved, and this problem deals with only one aspect
of the problem—a study of the distribution of whale swimming speeds. Pairs
of sightings and corresponding locations that could be reliably attributed to the
same whale were collected, thus providing an estimate of velocity for each whale.
The velocities, vy, vy, ..., V219 (km/h), were converted into times #,, 1>, ..., 1o
to swim 1 km—+#; = 1/v;. The distribution of the #; was then fit by a gamma
distribution. The times are contained in the file whales.

a. Make a histogram of the 210 values of #;. Does it appear that a gamma distri-
bution would be a plausible model to fit?

b. Fit the parameters of the gamma distribution by the method of moments.

c. Fit the parameters of the gamma distribution by maximum likelihood. How
do these values compare to those found before?

d. Plot the two gamma densities on top of the histogram. Do the fits look rea-
sonable?

e. Estimate the sampling distributions and the standard errors of the parameters
fit by the method of moments by using the bootstrap.

f. Estimate the sampling distributions and the standard errors of the parameters
fit by maximum likelihood by using the bootstrap. How do they compare to
the results found previously?
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g. Find approximate confidence intervals for the parameters estimated by maxi-
mum likelihood.

The Pareto distribution has been used in economics as a model for a density
function with a slowly decaying tail:

FGrlxo, 0) =0xix ", x>x, 01

Assume that xo > 0 is given and that X, X», ..., X, is an i.i.d. sample.

a. Find the method of moments estimate of 6.
b. Find the mle of 6.

c¢. Find the asymptotic variance of the mle.

d. Find a sufficient statistic for 6.

Consider the following method of estimating A for a Poisson distribution.
Observe that
po=P(X=0)=e"

Letting Y denote the number of zeros from an i.i.d. sample of size n, A might be

estimated by
- Y
A= —log (—)
n

Use the method of propagation of error to obtain approximate expressions for
the variance and the bias of this estimate. Compare the variance of this estimate
to the variance of the mle, computing relative efficiencies for various values of
M. Note that Y ~ bin(n, py).

For the example on muon decay in Section 8.4, suppose that instead of recording
x = cos 