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Purpose

The use of probability models and statistical methods for analyzing data has become
common practice in virtually all scientific disciplines. This book attempts to provide
acomprehensive introduction to those models and methods most likely to be encoun-
tered and used by students in their careers in engineering and the natural sciences.
Although the examples and exercises have been designed with scientists and engi-
neers in mind, most of the methods covered are basic to statistical analyses in many
other disciplines, so that students of business and the social sciences will also profit
from reading the book.

Approach

Studentsin a statistics course designed to serve other majors may beinitially skeptical of
the value and relevance of the subject matter, but my experience is that students can be
turned on to statistics by the use of good examples and exercises that blend their every-
day experiences with their scientific interests. Consequently, | have worked hard to find
examples of red, rather than artificial, data—data that someone thought was worth col-
lecting and andlyzing. Many of the methods presented, especidly in the later chapterson
statistical inference, are illustrated by analyzing data taken from published sources, and
many of the exercises also involve working with such data. Sometimes the reader may
be unfamiliar with the context of a particular problem (asindeed | often was), but | have
found that students are more attracted by real problemswith asomewhat strange context
than by patently artificia problemsin afamiliar setting.

Mathematical Level

The exposition is relatively modest in terms of mathematical development. Substantial
use of the caculus is made only in Chapter 4 and parts of Chapters 5 and 6. In particu-
lar, with the exception of an occasiond remark or aside, calculus appearsin theinference
part of the book only—in the second section of Chapter 6. Matrix algebrais not used at
al. Thus dmost dl the exposition should be accessible to those whose mathematical
background includes one semester or two quarters of differential and integra calculus.

Content

Chapter 1 begins with some basic concepts and terminology—population, sample,
descriptive and inferential statistics, enumerative versus analytic studies, and so on—
and continues with a survey of important graphical and numerical descriptive methods.
A rather traditional development of probability isgivenin Chapter 2, followed by prob-
ability distributions of discrete and continuous random variables in Chapters 3 and 4,
respectively. Joint distributions and their properties are discussed in the first part of
Chapter 5. The latter part of this chapter introduces statistics and their sampling distri-
butions, which form the bridge between probability and inference. The next three
chapters cover point estimation, statistical intervals, and hypothesis testing based on a
single sample. Methods of inference involving two independent samples and paired
data are presented in Chapter 9. The analysis of variance is the subject of Chapters 10
and 11 (single-factor and multifactor, respectively). Regression makes its initia
appearance in Chapter 12 (the ssimple linear regression model and correlation) and

xiii
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returns for an extensive encore in Chapter 13. The last three chapters develop chi-
sguared methods, distribution-free (nonparametric) procedures, and techniques from
statistical quality control.

Helping Students Learn

Although the book’s mathematical level should give most science and engineering
students little difficulty, working toward an understanding of the concepts and gain-
ing an appreciation for the logical development of the methodology may sometimes
require substantial effort. To help students gain such an understanding and appreci-
ation, | have provided numerous exercises ranging in difficulty from many that
involve routine application of text material to somethat ask the reader to extend con-
cepts discussed in the text to somewhat new situations. There are many more exer-
cises than most instructors would want to assign during any particular course, but |
recommend that students be required to work a substantial number of them; in a
problem-solving discipline, active involvement of this sort is the surest way to iden-
tify and close the gaps in understanding that inevitably arise. Answers to most odd-
numbered exercises appear in the answer section at the back of the text. In addition,
a Student Solutions Manual, consisting of worked-out solutions to virtualy al the
odd-numbered exercises, is available.

To access additional course materials and companion resources, please visit
www.cengagebrain.com. At the CengageBrain.com home page, search for the ISBN
of your title (from the back cover of your book) using the search box at the top of
the page. Thiswill take you to the product page where free companion resources can
be found.

New for This Edition

e A Glossary of Symbols/Abbreviations appears at the end of the book (the author
apologizes for his laziness in not getting this together for earlier editions!) and a
small set of sample exams appears on the companion website (available at
www.cengage.com/login).

e Many new examples and exercises, almost all based on real data or actual prob-
lems. Some of these scenarios are lesstechnical or broader in scope than what has
been included in previous editions—for example, weights of football players (to
illustrate multimodality), fundraising expenses for charitable organizations, and
the comparison of grade point averages for classes taught by part-time faculty with
those for classes taught by full-time faculty.

* The material on P-values has been substantially rewritten. The P-valueisnow ini-
tially defined as a probability rather than as the smallest significance level for
which the null hypothesis can be rejected. A simulation experiment is presented
to illustrate the behavior of P-values.

e Chapter 1 contains a new subsection on “ The Scope of Modern Statistics’ to indicate
how statisticians continue to develop new methodology while working on problems
in awide spectrum of disciplines.

» The exposition has been polished whenever possible to help students gain an intuitive
understanding of various concepts. For example, the cumulative distribution function
is more deliberately introduced in Chapter 3, the first example of maximum likeli-
hood in Section 6.2 contains a more careful discussion of likelihood, more attention
is given to power and type Il error probabilities in Section 8.3, and the material on
residuals and sums of sguares in multiple regression is laid out more explicitly in
Section 13.4.
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Overview and Descriptive
Statistics

“l am not much given to regret, so | puzzled over this one a while. Should have

taken much more statistics in college, | think.”
—NMax Levchin, Paypal Co-founder, Slide Founder

Quote of the week from the Web site of the

American Statistical Association on November 23, 2010

“] keep saying that the sexy job in the next 10 years will be statisticians, and I'm
not kidding.”

—Hal Varian, Chief Economist at Google

August 6, 2009, The New York Times

INTRODUCTION

Statistical concepts and methods are not only useful but indeed often indis-
pensable in understanding the world around us. They provide ways of gaining
new insights into the behavior of many phenomena that you will encounter in
your chosen field of specialization in engineering or science.

The discipline of statistics teaches us how to make intelligent judgments
and informed decisions in the presence of uncertainty and variation. Without
uncertainty or variation, there would be little need for statistical methods or stat-
isticians. If every component of a particular type had exactly the same lifetime, if
all resistors produced by a certain manufacturer had the same resistance value, if
pH determinations for soil specimens from a particular locale gave identical
results, and so on, then a single observation would reveal all desired information.

An interesting manifestation of variation arises in the course of performing
emissions testing on motor vehicles. The expense and time requirements of the
Federal Test Procedure (FTP) preclude its widespread use in vehicle inspection pro-
grams. As a result, many agencies have developed less costly and quicker tests,
which it is hoped replicate FTP results. According to the journal article “Motor

1
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2 CHAPTER 1 Overview and Descriptive Statistics

Vehicle Emissions Variability” (. of the Air and Waste Mgmt. Assoc., 1996:
667-675), the acceptance of the FTP as a gold standard has led to the widespread
belief that repeated measurements on the same vehicle would yield identical (or
nearly identical) results. The authors of the article applied the FTP to seven vehicles
characterized as “high emitters.” Here are the results for one such vehicle:

HC (gm/mile) 13.8 18.3 32.2 32.5
CO (gm/mile) 118 149 232 236

The substantial variation in both the HC and CO measurements casts consider-
able doubt on conventional wisdom and makes it much more difficult to make
precise assessments about emissions levels.

How can statistical techniques be used to gather information and draw
conclusions? Suppose, for example, that a materials engineer has developed a
coating for retarding corrosion in metal pipe under specified circumstances. If
this coating is applied to different segments of pipe, variation in environmental
conditions and in the segments themselves will result in more substantial cor-
rosion on some segments than on others. Methods of statistical analysis could
be used on data from such an experiment to decide whether the average
amount of corrosion exceeds an upper specification limit of some sort or to pre-
dict how much corrosion will occur on a single piece of pipe.

Alternatively, suppose the engineer has developed the coating in the belief
that it will be superior to the currently used coating. A comparative experiment
could be carried out to investigate this issue by applying the current coating to
some segments of pipe and the new coating to other segments. This must be
done with care lest the wrong conclusion emerge. For example, perhaps the aver-
age amount of corrosion is identical for the two coatings. However, the new
coating may be applied to segments that have superior ability to resist corrosion
and under less stressful environmental conditions compared to the segments and
conditions for the current coating. The investigator would then likely observe a
difference between the two coatings attributable not to the coatings themselves,
but just to extraneous variation. Statistics offers not only methods for analyzing
the results of experiments once they have been carried out but also suggestions
for how experiments can be performed in an efficient manner to mitigate the
effects of variation and have a better chance of producing correct conclusions.

I 1.1 Populations, Samples, and Processes

Engineers and scientists are constantly exposed to collections of facts, or data, both
in their professional capacities and in everyday activities. The discipline of statistics
provides methods for organizing and summarizing data and for drawing conclusions
based on information contained in the data.
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An investigation will typically focus on a well-defined collection of objects
constituting a population of interest. In one study, the population might consist of
all gelatin capsules of a particular type produced during a specified period. Another
investigation might involve the population consisting of all individuals who received
a B.S. in engineering during the most recent academic year. When desired informa-
tion is available for all objects in the population, we have what is called a census.
Constraints on time, money, and other scarce resources usually make a census
impractical or infeasible. Instead, a subset of the population—a sample—is selected
in some prescribed manner. Thus we might obtain a sample of bearings from a par-
ticular production run as a basis for investigating whether bearings are conforming
to manufacturing specifications, or we might select a sample of last year’s engineer-
ing graduates to obtain feedback about the quality of the engineering curricula.

We are usually interested only in certain characteristics of the objects in a pop-
ulation: the number of flaws on the surface of each casing, the thickness of each cap-
sule wall, the gender of an engineering graduate, the age at which the individual
graduated, and so on. A characteristic may be categorical, such as gender or type of
malfunction, or it may be numerical in nature. In the former case, the value of the
characteristic is a category (e.g., female or insufficient solder), whereas in the latter
case, the value is a number (e.g., age = 23 years or diameter = .502 cm). A variable
is any characteristic whose value may change from one object to another in the
population. We shall initially denote variables by lowercase letters from the end of our
alphabet. Examples include

x = brand of calculator owned by a student
y = number of visits to a particular Web site during a specified period
z = braking distance of an automobile under specified conditions

Data results from making observations either on a single variable or simultaneously
on two or more variables. A univariate data set consists of observations on a single
variable. For example, we might determine the type of transmission, automatic (A)
or manual (M), on each of ten automobiles recently purchased at a certain dealer-
ship, resulting in the categorical data set

M AAAMAAMAA

The following sample of lifetimes (hours) of brand D batteries put to a certain use is
a numerical univariate data set:

56 51 6.2 60 58 65 58 55

We have bivariate data when observations are made on each of two variables. Our
data set might consist of a (height, weight) pair for each basketball player on a
team, with the first observation as (72, 168), the second as (75, 212), and so on. If
an engineer determines the value of both x = component lifetime and y = reason
for component failure, the resulting data set is bivariate with one variable numeri-
cal and the other categorical. M ultivariate data arises when observations are made
on more than one variable (so bivariate is a special case of multivariate). For exam-
ple, a research physician might determine the systolic blood pressure, diastolic
blood pressure, and serum cholesterol level for each patient participating in a study.
Each observation would be a triple of numbers, such as (120, 80, 146). In many
multivariate data sets, some variables are numerical and others are categorical. Thus
the annual automobile issue of Consumer Reports gives values of such variables as
type of vehicle (small, sporty, compact, mid-size, large), city fuel efficiency (mpg),
highway fuel efficiency (mpg), drivetrain type (rear wheel, front wheel, four
wheel), and so on.
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Branches of Statistics

An investigator who has collected data may wish simply to summarize and describe
important features of the data. This entails using methods from descriptive statistics.
Some of these methods are graphical in nature; the construction of histograms,
boxplots, and scatter plots are primary examples. Other descriptive methods
involve calculation of numerical summary measures, such as means, standard
deviations, and correlation coefficients. The wide availability of statistical computer
software packages has made these tasks much easier to carry out than they used to be.
Computers are much more efficient than human beings at calculation and the creation
of pictures (once they have received appropriate instructions from the user!). This
means that the investigator doesn’t have to expend much effort on “grunt work” and
will have more time to study the data and extract important messages. Throughout
this book, we will present output from various packages such as Minitab, SAS,
S-Plus, and R. The R software can be downloaded without charge from the site
http://www.r-project.org.

Example 1.1  Charity is a big business in the United States. The Web site charitynavigator.com
gives information on roughly 5500 charitable organizations, and there are many
smaller charities that fly below the navigator’s radar screen. Some charities operate
very efficiently, with fundraising and administrative expenses that are only a small
percentage of total expenses, whereas others spend a high percentage of what they
take in on such activities. Here is data on fundraising expenses as a percentage of
total expenditures for a random sample of 60 charities:

6.1 126 347 16 188 22 30 22 56 38
22 31 13 11 141 40 210 61 13 204
75 39 101 81 195 52 120 158 104 52
64 108 831 36 62 63 163 127 13 038
88 51 37 263 60 480 82 117 72 39
153 166 88 120 47 147 64 170 25 16.2

Without any organization, it is difficult to get a sense of the data’s most prominent
features—what a typical (i.e. representative) value might be, whether values are
highly concentrated about a typical value or quite dispersed, whether there are any
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Figure 1.1 A Minitab stem-and-leaf display (tenths digit truncated) and histogram for the
charity fundraising percentage data
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gaps in the data, what fraction of the values are less than 20%, and so on. Figure 1.1
shows what is called a stem-and-leaf display as well as a histogram. In Section 1.2
we will discuss construction and interpretation of these data summaries. For the
moment, we hope you see how they begin to describe how the percentages are dis-
tributed over the range of possible values from 0 to 100. Clearly a substantial major-
ity of the charities in the sample spend less than 20% on fundraising, and only a few
percentages might be viewed as beyond the bounds of sensible practice. |

Having obtained a sample from a population, an investigator would frequently
like to use sample information to draw some type of conclusion (make an inference
of some sort) about the population. That is, the sample is a means to an end rather
than an end in itself. Techniques for generalizing from a sample to a population are
gathered within the branch of our discipline called inferential statistics.

Example 1.2 Material strength investigations provide a rich area of application for statistical meth-
ods. The article “Effects of Aggregates and Microfillers on the Flexural Properties of
Concrete” (Magazine of Concrete Research, 1997: 81-98) reported on a study of
strength properties of high-performance concrete obtained by using superplasticizers
and certain binders. The compressive strength of such concrete had previously been
investigated, but not much was known about flexural strength (a measure of ability to
resist failure in bending). The accompanying data on flexural strength (in
MegaPascal, MPa, where 1 Pa (Pascal) = 1.45 X 10* psi) appeared in the article
cited:

59 72 73 63 81 68 70 76 68 65 70 63 79 90
82 87 78 97 74 77 97 78 7.7 116 113 118 10.7

Suppose we want an estimate of the average value of flexural strength for all beams
that could be made in this way (if we conceptualize a population of all such beams,
we are trying to estimate the population mean). It can be shown that, with a high
degree of confidence, the population mean strength is between 7.48 MPa and
8.80 MPa; we call this a confidence interval or interval estimate. Alternatively, this
data could be used to predict the flexural strength of a single beam of this type. With
a high degree of confidence, the strength of a single such beam will exceed
7.35 MPa; the number 7.35 is called a lower prediction bound. [ |

The main focus of this book is on presenting and illustrating methods of infer-
ential statistics that are useful in scientific work. The most important types of infer-
ential procedures—point estimation, hypothesis testing, and estimation by
confidence intervals—are introduced in Chapters 6-8 and then used in more com-
plicated settings in Chapters 9—-16. The remainder of this chapter presents methods
from descriptive statistics that are most used in the development of inference.

Chapters 2-5 present material from the discipline of probability. This material
ultimately forms a bridge between the descriptive and inferential techniques.
Mastery of probability leads to a better understanding of how inferential procedures
are developed and used, how statistical conclusions can be translated into everyday
language and interpreted, and when and where pitfalls can occur in applying the
methods. Probability and statistics both deal with questions involving populations
and samples, but do so in an “inverse manner” to one another.

In a probability problem, properties of the population under study are
assumed known (e.g., in a numerical population, some specified distribution of the
population values may be assumed), and questions regarding a sample taken from
the population are posed and answered. In a statistics problem, characteristics of a
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Probability

C e
Inferential
statistics

Figure 1.2 The relationship between probability and inferential statistics

sample are available to the experimenter, and this information enables the experi-
menter to draw conclusions about the population. The relationship between the
two disciplines can be summarized by saying that probability reasons from the
population to the sample (deductive reasoning), whereas inferential statistics rea-
sons from the sample to the population (inductive reasoning). This is illustrated in
Figure 1.2.

Before we can understand what a particular sample can tell us about the pop-
ulation, we should first understand the uncertainty associated with taking a sample
from a given population. This is why we study probability before statistics.

Example 1.3 As an example of the contrasting focus of probability and inferential statistics, con-
sider drivers’ use of manual lap belts in cars equipped with automatic shoulder belt
systems. (The article “Automobile Seat Belts: Usage Patterns in Automatic Belt
Systems,” Human Factors, 1998: 126-135, summarizes usage data.) In probability,
we might assume that 50% of all drivers of cars equipped in this way in a certain
metropolitan area regularly use their lap belt (an assumption about the population),
so we might ask, “How likely is it that a sample of 100 such drivers will include at
least 70 who regularly use their lap belt?” or “How many of the drivers in a sample
of size 100 can we expect to regularly use their lap belt?”” On the other hand, in infer-
ential statistics, we have sample information available; for example, a sample of 100
drivers of such cars revealed that 65 regularly use their lap belt. We might then ask,
“Does this provide substantial evidence for concluding that more than 50% of all
such drivers in this area regularly use their lap belt?” In this latter scenario, we are
attempting to use sample information to answer a question about the structure of the
entire population from which the sample was selected. |

In the foregoing lap belt example, the population is well defined and concrete:
all drivers of cars equipped in a certain way in a particular metropolitan area. In
Example 1.2, however, the strength measurements came from a sample of prototype
beams that had not been selected from an existing population. Instead, it is conven-
ient to think of the population as consisting of all possible strength measurements
that might be made under similar experimental conditions. Such a population is
referred to as a conceptual or hypothetical population. There are a number of prob-
lem situations in which we fit questions into the framework of inferential statistics
by conceptualizing a population.

The Scope of Modern Statistics

These days statistical methodology is employed by investigators in virtually all dis-
ciplines, including such areas as

- molecular biology (analysis of microarray data)

- ecology (describing quantitatively how individuals in various animal and plant
populations are spatially distributed)
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- materials engineering (studying properties of various treatments to retard corrosion)
- marketing (developing market surveys and strategies for marketing new products)
- public health (identifying sources of diseases and ways to treat them)

- civil engineering (assessing the effects of stress on structural elements and the
impacts of traffic flows on communities)

As you progress through the book, you’ll encounter a wide spectrum of different sce-
narios in the examples and exercises that illustrate the application of techniques from
probability and statistics. Many of these scenarios involve data or other material
extracted from articles in engineering and science journals. The methods presented
herein have become established and trusted tools in the arsenal of those who work with
data. Meanwhile, statisticians continue to develop new models for describing random-
ness, and uncertainty and new methodology for analyzing data. As evidence of the con-
tinuing creative efforts in the statistical community, here are titles and capsule
descriptions of some articles that have recently appeared in statistics journals (Journal
of the American Statistical Association is abbreviated JASA, and AAS is short for the
Annals of Applied Statistics, two of the many prominent journals in the discipline):

- “Modeling Spatiotemporal Forest Health Monitoring Data” (JASA, 2009:
899-911): Forest health monitoring systems were set up across Europe in the
1980s in response to concerns about air-pollution-related forest dieback, and
have continued operation with a more recent focus on threats from climate
change and increased ozone levels. The authors develop a quantitative descrip-
tion of tree crown defoliation, an indicator of tree health.

- “Active Learning Through Sequential Design, with Applications to the Detection
of Money Laundering” (JASA, 2009: 969-981): Money laundering involves con-
cealing the origin of funds obtained through illegal activities. The huge number
of transactions occurring daily at financial institutions makes detection of money
laundering difficult. The standard approach has been to extract various summary
quantities from the transaction history and conduct a time-consuming investiga-
tion of suspicious activities. The article proposes a more efficient statistical
method and illustrates its use in a case study.

- “Robust Internal Benchmarking and False Discovery Rates for Detecting Racial
Bias in Police Stops” (JASA, 2009: 661-668): Allegations of police actions that
are attributable at least in part to racial bias have become a contentious issue in
many communities. This article proposes a new method that is designed to
reduce the risk of flagging a substantial number of “false positives” (individuals
falsely identified as manifesting bias). The method was applied to data on
500,000 pedestrian stops in New York City in 2006; of the 3000 officers regu-
larly involved in pedestrian stops, 15 were identified as having stopped a sub-
stantially greater fraction of Black and Hispanic people than what would be
predicted were bias absent.

- “Records in Athletics Through Extreme Value Theory” (JASA, 2008:
1382-1391): The focus here is on the modeling of extremes related to world
records in athletics. The authors start by posing two questions: (1) What is the
ultimate world record within a specific event (e.g. the high jump for women)?
and (2) How “good” is the current world record, and how does the quality of
current world records compare across different events? A total of 28 events
(8 running, 3 throwing, and 3 jumping for both men and women) are considered.
For example, one conclusion is that only about 20 seconds can be shaved off the
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8 CHAPTER 1 Overview and Descriptive Statistics

men’s marathon record, but that the current women’s marathon record is almost
5 minutes longer than what can ultimately be achieved. The methodology also
has applications to such issues as ensuring airport runways are long enough and
that dikes in Holland are high enough.

- “Analysis of Episodic Data with Application to Recurrent Pulmonary
Exacerbations in Cystic Fibrosis Patients” (JASA, 2008: 498-510): The analysis
of recurrent medical events such as migraine headaches should take into account
not only when such events first occur but also how long they last—Ilength of
episodes may contain important information about the severity of the disease or
malady, associated medical costs, and the quality of life. The article proposes a
technique that summarizes both episode frequency and length of episodes, and
allows effects of characteristics that cause episode occurrence to vary over time.
The technique is applied to data on cystic fibrosis patients (CF is a serious
genetic disorder affecting sweat and other glands).

“Prediction of Remaining Life of Power Transformers Based on Left Truncated
and Right Censored Lifetime Data” (AAS, 2009: 857-879): There are roughly
150,000 high-voltage power transmission transformers in the United States.
Unexpected failures can cause substantial economic losses, so it is important to
have predictions for remaining lifetimes. Relevant data can be complicated because
lifetimes of some transformers extend over several decades during which records
were not necessarily complete. In particular, the authors of the article use data
from a certain energy company that began keeping careful records in 1980. But
some transformers had been installed before January 1, 1980, and were still in
service after that date (“left truncated” data), whereas other units were still in serv-
ice at the time of the investigation, so their complete lifetimes are not available
(“right censored” data). The article describes various procedures for obtaining an
interval of plausible values (a prediction interval) for a remaining lifetime and for
the cumulative number of failures over a specified time period.

- “The BARISTA: A Model for Bid Arrivals in Online Auctions” (AAS, 2007:
412-441): Online auctions such as those on eBay and uBid often have character-
istics that differentiate them from traditional auctions. One particularly important
difference is that the number of bidders at the outset of many traditional auctions
is fixed, whereas in online auctions this number and the number of resulting bids
are not predetermined. The article proposes a new BARISTA (for Bid ARivals In
STAges) model for describing the way in which bids arrive online. The model
allows for higher bidding intensity at the outset of the auction and also as the
auction comes to a close. Various properties of the model are investigated and
then validated using data from eBay.com on auctions for Palm M515 personal
assistants, Microsoft Xbox games, and Cartier watches.

“Statistical Challenges in the Analysis of Cosmic Microwave Background
Radiation” (AAS, 2009: 61-95): The cosmic microwave background (CMB) is a
significant source of information about the early history of the universe. Its radi-
ation level is uniform, so extremely delicate instruments have been developed to
measure fluctuations. The authors provide a review of statistical issues with
CMB data analysis; they also give many examples of the application of statistical
procedures to data obtained from a recent NASA satellite mission, the Wilkinson
Microwave Anisotropy Probe.

Statistical information now appears with increasing frequency in the popular media,
and occasionally the spotlight is even turned on statisticians. For example, the
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Nov. 23, 2009, New York Times reported in an article “Behind Cancer Guidelines,
Quest for Data” that the new science for cancer investigations and more sophisti-
cated methods for data analysis spurred the U.S. Preventive Services task force to
re-examine guidelines for how frequently middle-aged and older women should
have mammograms. The panel commissioned six independent groups to do statis-
tical modeling. The result was a new set of conclusions, including an assertion that
mammograms every two years are nearly as beneficial to patients as annual mam-
mograms, but confer only half the risk of harms. Donald Berry, a very prominent
biostatistician, was quoted as saying he was pleasantly surprised that the task force
took the new research to heart in making its recommendations. The task force’s
report has generated much controversy among cancer organizations, politicians,
and women themselves.

It is our hope that you will become increasingly convinced of the importance
and relevance of the discipline of statistics as you dig more deeply into the book and
the subject. Hopefully you’ll be turned on enough to want to continue your statisti-
cal education beyond your current course.

Enumerative Versus Analytic Studies

W. E. Deming, a very influential American statistician who was a moving force in
Japan’s quality revolution during the 1950s and 1960s, introduced the distinction
between enumerative studies and analytic studies. In the former, interest is focused
on a finite, identifiable, unchanging collection of individuals or objects that make
up a population. A sampling frame—that is, a listing of the individuals or objects
to be sampled—is either available to an investigator or else can be constructed. For
example, the frame might consist of all signatures on a petition to qualify a certain
initiative for the ballot in an upcoming election; a sample is usually selected to
ascertain whether the number of valid signatures exceeds a specified value. As
another example, the frame may contain serial numbers of all furnaces manufac-
tured by a particular company during a certain time period; a sample may be
selected to infer something about the average lifetime of these units. The use of
inferential methods to be developed in this book is reasonably noncontroversial in
such settings (though statisticians may still argue over which particular methods
should be used).

An analytic study is broadly defined as one that is not enumerative in
nature. Such studies are often carried out with the objective of improving a future
product by taking action on a process of some sort (e.g., recalibrating equipment
or adjusting the level of some input such as the amount of a catalyst). Data can
often be obtained only on an existing process, one that may differ in important
respects from the future process. There is thus no sampling frame listing the indi-
viduals or objects of interest. For example, a sample of five turbines with a new
design may be experimentally manufactured and tested to investigate efficiency.
These five could be viewed as a sample from the conceptual population of all pro-
totypes that could be manufactured under similar conditions, but not necessarily
as representative of the population of units manufactured once regular production
gets underway. Methods for using sample information to draw conclusions about
future production units may be problematic. Someone with expertise in the area
of turbine design and engineering (or whatever other subject area is relevant)
should be called upon to judge whether such extrapolation is sensible. A good
exposition of these issues is contained in the article “Assumptions for Statistical
Inference” by Gerald Hahn and William Meeker (The American Statistician,
1993: 1-11).
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Collecting Data

Statistics deals not only with the organization and analysis of data once it has been
collected but also with the development of techniques for collecting the data. If data
is not properly collected, an investigator may not be able to answer the questions
under consideration with a reasonable degree of confidence. One common problem is
that the target population—the one about which conclusions are to be drawn—may
be different from the population actually sampled. For example, advertisers would
like various kinds of information about the television-viewing habits of potential cus-
tomers. The most systematic information of this sort comes from placing monitoring
devices in a small number of homes across the United States. It has been conjectured
that placement of such devices in and of itself alters viewing behavior, so that char-
acteristics of the sample may be different from those of the target population.

When data collection entails selecting individuals or objects from a frame, the
simplest method for ensuring a representative selection is to take a simple random
sample. This is one for which any particular subset of the specified size (e.g., a sam-
ple of size 100) has the same chance of being selected. For example, if the frame
consists of 1,000,000 serial numbers, the numbers 1, 2, .. ., up to 1,000,000 could
be placed on identical slips of paper. After placing these slips in a box and thor-
oughly mixing, slips could be drawn one by one until the requisite sample size has
been obtained. Alternatively (and much to be preferred), a table of random numbers
or a computer’s random number generator could be employed.

Sometimes alternative sampling methods can be used to make the selection
process easier, to obtain extra information, or to increase the degree of confidence in
conclusions. One such method, stratified sampling, entails separating the population
units into nonoverlapping groups and taking a sample from each one. For example,
a manufacturer of DVD players might want information about customer satisfaction
for units produced during the previous year. If three different models were manu-
factured and sold, a separate sample could be selected from each of the three corre-
sponding strata. This would result in information on all three models and ensure that
no one model was over- or underrepresented in the entire sample.

Frequently a “convenience” sample is obtained by selecting individuals or
objects without systematic randomization. As an example, a collection of bricks may
be stacked in such a way that it is extremely difficult for those in the center to be
selected. If the bricks on the top and sides of the stack were somehow different from
the others, resulting sample data would not be representative of the population. Often
an investigator will assume that such a convenience sample approximates a random
sample, in which case a statistician’s repertoire of inferential methods can be used;
however, this is a judgment call. Most of the methods discussed herein are based on
a variation of simple random sampling described in Chapter 5.

Engineers and scientists often collect data by carrying out some sort of
designed experiment. This may involve deciding how to allocate several different
treatments (such as fertilizers or coatings for corrosion protection) to the various
experimental units (plots of land or pieces of pipe). Alternatively, an investigator
may systematically vary the levels or categories of certain factors (e.g., pressure or
type of insulating material) and observe the effect on some response variable (such
as yield from a production process).

Example 1.4 An article in the New York Times (Jan. 27, 1987) reported that heart attack risk
could be reduced by taking aspirin. This conclusion was based on a designed experi-
ment involving both a control group of individuals that took a placebo having the
appearance of aspirin but known to be inert and a treatment group that took aspirin
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according to a specified regimen. Subjects were randomly assigned to the groups to
protect against any biases and so that probability-based methods could be used to
analyze the data. Of the 11,034 individuals in the control group, 189 subsequently
experienced heart attacks, whereas only 104 of the 11,037 in the aspirin group had
a heart attack. The incidence rate of heart attacks in the treatment group was only
about half that in the control group. One possible explanation for this result is chance
variation—that aspirin really doesn’t have the desired effect and the observed dif-
ference is just typical variation in the same way that tossing two identical coins
would usually produce different numbers of heads. However, in this case, inferential
methods suggest that chance variation by itself cannot adequately explain the mag-
nitude of the observed difference. |

Example 1.5 An engineer wishes to investigate the effects of both adhesive type and conductor
material on bond strength when mounting an integrated circuit (IC) on a certain sub-
strate. Two adhesive types and two conductor materials are under consideration. Two
observations are made for each adhesive-type/conductor-material combination,
resulting in the accompanying data:

Adhesive Type Conductor Material Observed Bond Strength Average
1 1 82, 77 79.5
1 2 75, 87 81.0
2 1 84, 80 82.0
2 2 78, 90 84.0

The resulting average bond strengths are pictured in Figure 1.3. It appears that adhe-
sive type 2 improves bond strength as compared with type 1 by about the same
amount whichever one of the conducting materials is used, with the 2, 2 combina-
tion being best. Inferential methods can again be used to judge whether these effects
are real or simply due to chance variation.

Average
strength
85— )
Adhesive type 2
Adhesive type 1
80
T T
1 2 Conducting material

Figure 1.3 Average bond strengths in Example 1.5

Suppose additionally that there are two cure times under consideration and also two
types of IC post coating. There are then2 - 2 - 2 - 2 = 16 combinations of these four
factors, and our engineer may not have enough resources to make even a single obser-
vation for each of these combinations. In Chapter 11, we will see how the careful selec-
tion of a fraction of these possibilities will usually yield the desired information. M
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CHAPTER 1 Overview and Descriptive Statistics

EXERCISES  Section 1.1 (1-9)

1.

Give one possible sample of size 4 from each of the follow-

ing populations:

a. All daily newspapers published in the United States

b. All companies listed on the New York Stock Exchange

c¢. All students at your college or university

d. All grade point averages of students at your college or
university

For each of the following hypothetical populations, give a

plausible sample of size 4:

a. All distances that might result when you throw a football

b. Page lengths of books published 5 years from now

¢. All possible earthquake-strength measurements (Richter
scale) that might be recorded in California during the next
year

d. All possible yields (in grams) from a certain chemical
reaction carried out in a laboratory

Consider the population consisting of all computers of a cer-

tain brand and model, and focus on whether a computer

needs service while under warranty.

a. Pose several probability questions based on selecting a
sample of 100 such computers.

b. What inferential statistics question might be answered by
determining the number of such computers in a sample of
size 100 that need warranty service?

a. Give three different examples of concrete populations and
three different examples of hypothetical populations.

b. For one each of your concrete and your hypothetical pop-
ulations, give an example of a probability question and an
example of an inferential statistics question.

Many universities and colleges have instituted supplemental
instruction (SI) programs, in which a student facilitator meets
regularly with a small group of students enrolled in the
course to promote discussion of course material and enhance
subject mastery. Suppose that students in a large statistics
course (what else?) are randomly divided into a control group
that will not participate in Sl and a treatment group that will
participate. At the end of the term, each student’s total score
in the course is determined.
a. Are the scores from the SI group a sample from an exist-
ing population? If so, what is it? If not, what is the rele-
vant conceptual population?

b. What do you think is the advantage of randomly dividing
the students into the two groups rather than letting each
student choose which group to join?

c. Why didn’t the investigators put all students in the treat-
ment group? Note: The article “Supplemental Instruction:
An Effective Component of Student Affairs Programming”
(J. of College Student Devel., 1997: 577-586) discusses
the analysis of data from several SI programs.

. The California State University (CSU) system consists of 23

campuses, from San Diego State in the south to Humboldt
State near the Oregon border. A CSU administrator wishes to
make an inference about the average distance between the
hometowns of students and their campuses. Describe and dis-
cuss several different sampling methods that might be
employed. Would this be an enumerative or an analytic
study? Explain your reasoning.

. A certain city divides naturally into ten district neighborhoods.

How might a real estate appraiser select a sample of single-
family homes that could be used as a basis for developing an
equation to predict appraised value from characteristics such as
age, size, number of bathrooms, distance to the nearest school,
and so on? Is the study enumerative or analytic?

. The amount of flow through a solenoid valve in an automo-

bile’s pollution-control system is an important characteristic.
An experiment was carried out to study how flow rate
depended on three factors: armature length, spring load, and
bobbin depth. Two different levels (low and high) of each fac-
tor were chosen, and a single observation on flow was made
for each combination of levels.

a. The resulting data set consisted of how many observations?
b. Is this an enumerative or analytic study? Explain your rea-

soning.

. In a famous experiment carried out in 1882, Michelson and

Newcomb obtained 66 observations on the time it took for
light to travel between two locations in Washington, D.C. A
few of the measurements (coded in a certain manner) were
31, 23,32, 36, —2, 26, 27, and 31.

a. Why are these measurements not identical?

b. Is this an enumerative study? Why or why not?

1.2 Pictorial and Tabular Methods in
Descriptive Statistics

Descriptive statistics can be divided into two general subject areas. In this section, we
consider representing a data set using visual techniques. In Sections 1.3 and 1.4, we
will develop some numerical summary measures for data sets. Many visual techniques
may already be familiar to you: frequency tables, tally sheets, histograms, pie charts,
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1.2 Pictorial and Tabular Methods in Descriptive Statistics 13

bar graphs, scatter diagrams, and the like. Here we focus on a selected few of these
techniques that are most useful and relevant to probability and inferential statistics.

Notation

Some general notation will make it easier to apply our methods and formulas to a
wide variety of practical problems. The number of observations in a single sample,
that is, the sample size, will often be denoted by n, so that n = 4 for the sample of
universities {Stanford, lowa State, Wyoming, Rochester} and also for the sample of
pH measurements {6.3, 6.2, 5.9, 6.5}. If two samples are simultaneously under con-
sideration, either m and n or n, and n, can be used to denote the numbers of obser-
vations. Thus if {29.7, 31.6, 30.9} and {28.7, 29.5, 29.4, 30.3} are
thermal-efficiency measurements for two different types of diesel engines, then
m=3andn = 4.

Given a data set consisting of n observations on some variable x, the individ-
ual observations will be denoted by x,, X, X3, . . ., X,. The subscript bears no relation
to the magnitude of a particular observation. Thus x, will not in general be the small-
est observation in the set, nor will x, typically be the largest. In many applications,
X, will be the first observation gathered by the experimenter, x, the second, and so
on. The ith observation in the data set will be denoted by x;.

Stem-and-Leaf Displays

Consider a numerical data set x,, X,, . . ., X, for which each x; consists of at least two
digits. A quick way to obtain an informative visual representation of the data set is
to construct a stem-and-leaf display.

Constructing a Stem-and-Leaf Display

1. Select one or more leading digits for the stem values. The trailing digits
become the leaves.

2. List possible stem values in a vertical column.

3. Record the leaf for each observation beside the corresponding stem value.

4. Indicate the units for stems and leaves someplace in the display.

If the data set consists of exam scores, each between 0 and 100, the score of 83
would have a stem of 8 and a leaf of 3. For a data set of automobile fuel efficien-
cies (mpg), all between 8.1 and 47.8, we could use the tens digit as the stem, so
32.6 would then have a leaf of 2.6. In general, a display based on between 5 and
20 stems is recommended.

Example 1.6  The use of alcohol by college students is of great concern not only to those in the aca-
demic community but also, because of potential health and safety consequences, to
society at large. The article “Health and Behavioral Consequences of Binge Drinking
in College” (J. of the Amer. Med. Assoc., 1994: 1672-1677) reported on a comprehen-
sive study of heavy drinking on campuses across the United States. A binge episode
was defined as five or more drinks in a row for males and four or more for females.
Figure 1.4 shows a stem-and-leaf display of 140 values of x = the percentage of
undergraduate students who are binge drinkers. (These values were not given in the
cited article, but our display agrees with a picture of the data that did appear.)
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14 CHAPTER 1 Overview and Descriptive Statistics

4
1345678889

1223456666777889999 Stem: tens digit
0112233344555666677777388899999 Leaf: ones digit

1112222233444455666666 77788888999
001112222334556666677 77888899
01111244455666778

OO, WNEO

Figure 1.4  Stem-and-leaf display for the percentage of binge drinkers at each of the 140 colleges

The first leaf on the stem 2 row is 1, which tells us that 21% of the students
at one of the colleges in the sample were binge drinkers. Without the identification
of stem digits and leaf digits on the display, we wouldn’t know whether the stem 2,
leaf 1 observation should be read as 21%, 2.1%, or .21%.

When creating a display by hand, ordering the leaves from smallest to largest
on each line can be time-consuming. This ordering usually contributes little if any
extra information. Suppose the observations had been listed in alphabetical order by
school name, as

16% 33% 64% 37% 31%...

Then placing these values on the display in this order would result in the stem 1 row
having 6 as its first leaf, and the beginning of the stem 3 row would be

3 | 371...

The display suggests that a typical or representative value is in the stem 4 row,
perhaps in the mid-40% range. The observations are not highly concentrated about
this typical value, as would be the case if all values were between 20% and 49%. The
display rises to a single peak as we move downward, and then declines; there are no
gaps in the display. The shape of the display is not perfectly symmetric, but instead
appears to stretch out a bit more in the direction of low leaves than in the direction
of high leaves. Lastly, there are no observations that are unusually far from the bulk
of the data (no outliers), as would be the case if one of the 26% values had instead
been 86%. The most surprising feature of this data is that, at most colleges in the
sample, at least one-quarter of the students are binge drinkers. The problem of heavy
drinking on campuses is much more pervasive than many had suspected. |

A stem-and-leaf display conveys information about the following aspects of
the data:

- identification of a typical or representative value
- extent of spread about the typical value

- presence of any gaps in the data

- extent of symmetry in the distribution of values
- number and location of peaks

- presence of any outlying values

Example 1.7  Figure 1.5 presents stem-and-leaf displays for a random sample of lengths of golf
courses (yards) that have been designated by Golf Magazine as among the most chal-
lenging in the United States. Among the sample of 40 courses, the shortest is 6433
yards long, and the longest is 7280 yards. The lengths appear to be distributed in a
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1.2 Pictorial and Tabular Methods in Descriptive Statistics 15

roughly uniform fashion over the range of values in the sample. Notice that a stem
choice here of either a single digit (6 or 7) or three digits (643, . . ., 728) would yield
an uninformative display, the first because of too few stems and the latter because of
too many.

Statistical software packages do not generally produce displays with multiple-
digit stems. The Minitab display in Figure 1.5(b) results from truncating each obser-
vation by deleting the ones digit.

64 | 35 64 33 70 Stem: Thousands and hundreds digits St em and- | eaf of yardage N=40
65 | 26 27 06 83 Leaf: Tensand onesdigits Leaf Unit =10
66 | 05 94 14 g gg ggg;
679 70 00 98 70 45 13 11 66 019
68 |90 70 73 50 18 67 0147799
69 | 00 27 36 04 (4) 68 5779
70 |51 05 11 40 50 22 ii ?8 822355
71131 69 68 05 13 65 8 71 013666
72 | 80 09 2 72 08
@ (b)
Figure 1.5 Stem-and-leaf displays of golf course lengths: (a) two-digit leaves; (b) display
from Minitab with truncated one-digit leaves [ |
Dotplots

A dotplot is an attractive summary of numerical data when the data set is reasonably
small or there are relatively few distinct data values. Each observation is represented
by a dot above the corresponding location on a horizontal measurement scale. When
a value occurs more than once, there is a dot for each occurrence, and these dots are
stacked vertically. As with a stem-and-leaf display, a dotplot gives information about
location, spread, extremes, and gaps.

Example 1.8  Here is data on state-by-state appropriations for higher education as a percentage of
state and local tax revenue for the fiscal year 2006-2007 (from the Statistical
Abstract of the United States); values are listed in order of state abbreviations (AL
first, WY last):

108 69 80 88 73 36 41 60 44 83
81 80 59 59 76 89 85 81 42 57
40 67 58 99 56 58 93 62 25 45

128 35 100 91 50 81 53 39 40 80
74 75 84 83 26 51 6.0 70 65 103

Figure 1.6 shows a dotplot of the data. The most striking feature is the substantial
state-to-state variability. The largest value (for New Mexico) and the two smallest
values (New Hampshire and Vermont) are somewhat separated from the bulk of the
data, though not perhaps by enough to be considered outliers.

L] L] LN ] LN ] L] LN J LN X L]

.I L] .T.. ...T... ..T [ X ] ..T..... I. o o I I.

2.8 4.2 5.6 7.0 84 9.8 11.2 12.6
Figure 1.6 A dotplot of the data from Example 1.8 |
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16 CHAPTER 1 Overview and Descriptive Statistics

If the number of compressive strength observations in Example 1.2 had been
much larger than the n = 27 actually obtained, it would be quite cumbersome to
construct a dotplot. Our next technique is well suited to such situations.

Histograms

Some numerical data is obtained by counting to determine the value of a variable (the
number of traffic citations a person received during the last year, the number of cus-
tomers arriving for service during a particular period), whereas other data is obtained by
taking measurements (weight of an individual, reaction time to a particular stimulus).
The prescription for drawing a histogram is generally different for these two cases.

DEFINITION A numerical variable is discrete if its set of possible values either is finite or
else can be listed in an infinite sequence (one in which there is a first number,
a second number, and so on). A numerical variable is continuous if its possi-
ble values consist of an entire interval on the number line.

A discrete variable x almost always results from counting, in which case pos-
sible values are 0, 1, 2, 3, . . . or some subset of these integers. Continuous variables
arise from making measurements. For example, if x is the pH of a chemical sub-
stance, then in theory x could be any number between 0 and 14: 7.0, 7.03, 7.032, and
so on. Of course, in practice there are limitations on the degree of accuracy of any
measuring instrument, so we may not be able to determine pH, reaction time, height,
and concentration to an arbitrarily large number of decimal places. However, from
the point of view of creating mathematical models for distributions of data, it is help-
ful to imagine an entire continuum of possible values.

Consider data consisting of observations on a discrete variable x. The frequency
of any particular x value is the number of times that value occurs in the data set. The
relative frequency of a value is the fraction or proportion of times the value occurs:

number of times the value occurs
number of observations in the data set

relative frequency of a value =

Suppose, for example, that our data set consists of 200 observations on x = the number
of courses a college student is taking this term. If 70 of these x values are 3, then

frequency of the x value 3: 70
70
200

Multiplying a relative frequency by 100 gives a percentage; in the college-course
example, 35% of the students in the sample are taking three courses. The relative fre-
quencies, or percentages, are usually of more interest than the frequencies them-
selves. In theory, the relative frequencies should sum to 1, but in practice the sum
may differ slightly from 1 because of rounding. A frequency distribution is a tab-
ulation of the frequencies and/or relative frequencies.

relative frequency of the x value 3: = .35

Constructing a Histogram for Discrete Data

First, determine the frequency and relative frequency of each x value. Then mark
possible x values on a horizontal scale. Above each value, draw a rectangle whose
height is the relative frequency (or alternatively, the frequency) of that value.
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1.2 Pictorial and Tabular Methods in Descriptive Statistics 17

This construction ensures that the area of each rectangle is proportional to the rela-
tive frequency of the value. Thus if the relative frequencies of x = 1 and x = 5 are
.35 and .07, respectively, then the area of the rectangle above 1 is five times the area
of the rectangle above 5.

Example 1.9  How unusual is a no-hitter or a one-hitter in a major league baseball game, and how
frequently does a team get more than 10, 15, or even 20 hits? Table 1.1 is a frequency
distribution for the number of hits per team per game for all nine-inning games that
were played between 1989 and 1993.

Table 1.1 Frequency Distribution for Hits in Nine-Inning Games

Number Relative Number of Relative
HitsGame of Games Frequency HitsGame Games Frequency

0 20 .0010 14 569 .0294
1 72 .0037 15 393 .0203
2 209 .0108 16 253 .0131
3 527 .0272 17 171 .0088
4 1048 .0541 18 97 .0050
5 1457 .0752 19 53 .0027
6 1988 .1026 20 31 .0016
7 2256 1164 21 19 .0010
8 2403 1240 22 13 .0007
9 2256 1164 23 5 .0003
10 1967 .1015 24 1 .0001
11 1509 .0779 25 0 .0000
12 1230 .0635 26 1 .0001
13 834 .0430 27 1 .0001
19,383 1.0005

The corresponding histogram in Figure 1.7 rises rather smoothly to a single peak and
then declines. The histogram extends a bit more on the right (toward large values)
than it does on the left—a slight “positive skew.”

Relative frequency
10 1 *i ——
.05 |
0 T T T Hits/game
0 10 20

Figure 1.7 Histogram of number of hits per nine-inning game
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18 CHAPTER 1 Overview and Descriptive Statistics

Either from the tabulated information or from the histogram itself, we can determine

the following:
relative relative relative
proportion of games with = frequency + frequency + frequency
= .0010 + .0037 + .0108 = .0155
Similarly,
proportion of games with = .0752 + .1026 + --- + .1015 = .6361

between 5 and 10 hits (inclusive)

That is, roughly 64% of all these games resulted in between 5 and 10 (inclusive)
hits. [ |

Constructing a histogram for continuous data (measurements) entails subdi-
viding the measurement axis into a suitable number of class intervals or classes,
such that each observation is contained in exactly one class. Suppose, for example,
that we have 50 observations on x = fuel efficiency of an automobile (mpg), the
smallest of which is 27.8 and the largest of which is 31.4. Then we could use the
class boundaries 27.5, 28.0, 28.5, . . ., and 31.5 as shown here:

275 280 285 290 295 300 305 310 315

One potential difficulty is that occasionally an observation lies on a class bound-
ary so therefore does not fall in exactly one interval, for example, 29.0. One way
to deal with this problem is to use boundaries like 27.55, 28.05, . . ., 31.55.
Adding a hundredths digit to the class boundaries prevents observations from
falling on the resulting boundaries. Another approach is to use the classes
27.5—<28.0,28.0—<28.5,...,31.0-<31.5. Then 29.0 falls in the class
29.0—< 29.5 rather than in the class 28.5—< 29.0. In other words, with this con-
vention, an observation on a boundary is placed in the interval to the right of the
boundary. This is how Minitab constructs a histogram.

Constructing a Histogram for Continuous Data: Equal Class Widths

Determine the frequency and relative frequency for each class. Mark the
class boundaries on a horizontal measurement axis. Above each class inter-
val, draw a rectangle whose height is the corresponding relative frequency
(or frequency).

Example 1.10  Power companies need information about customer usage to obtain accurate fore-
casts of demands. Investigators from Wisconsin Power and Light determined energy
consumption (BTUs) during a particular period for a sample of 90 gas-heated
homes. An adjusted consumption value was calculated as follows:

consumption
(weather, in degree days)(house area)

adjusted consumption =

This resulted in the accompanying data (part of the stored data set
FURNACE.MTW available in Minitab), which we have ordered from smallest to
largest.
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297 400 520 556 594 598 635 662 672 6.78
680 68 694 715 716 723 729 762 7.62 7.69
773 787 793 800 826 829 837 847 854 858
861 867 869 881 907 927 937 943 952 958
960 976 982 983 983 984 996 10.04 10.21 10.28
10.28 10.30 10.35 10.36 10.40 10.49 1050 10.64 10.95 11.09
11.12 1121 1129 1143 1162 11.70 1170 12.16 1219 12.28
1231 1262 1269 1271 1291 1292 1311 13.38 13.42 1343
13.47 13.60 1396 1424 1435 1512 1524 16.06 16.90 18.26

We let Minitab select the class intervals. The most striking feature of the histogram
in Figure 1.8 is its resemblance to a bell-shaped (and therefore symmetric) curve,
with the point of symmetry roughly at 10.

Class 1-<33-<5 5—-<7 7—<9 9—-<11 11-<13 13—<15 15—<17 17—-<19

Frequency 1 1 11 21 25 17 9 4 1
Relative .011 .011 122 233  .278 .189 .100 .044 011
frequency

30 A

20 A

<

8

o —

s

10

0 -

T T T T T T T T T T
1 3 5 7 9 11 13 15 17 19
BTUIN

Figure 1.8 Histogram of the energy consumption data from Example 1.10
From the histogram,

i 34
proportion of _ .01 + .01 + .12 + .23 = .37 (exactvalue = — = .378)
observations 90

less than 9

The relative frequency for the 9—<<11 class is about .27, so we estimate that roughly
half of this, or .135, is between 9 and 10. Thus

ngspg]r;:]ozoc’f observations _ .37 + .135 = .505 (slightly more than 50%)

The exact value of this proportion is 47/90 = .522. |

There are no hard-and-fast rules concerning either the number of classes or the
choice of classes themselves. Between 5 and 20 classes will be satisfactory for most
data sets. Generally, the larger the number of observations in a data set, the more
classes should be used. A reasonable rule of thumb is

number of classes = Vnumber of observations
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20 CHAPTER 1 Overview and Descriptive Statistics

Equal-width classes may not be a sensible choice if there are some regions of
the measurement scale that have a high concentration of data values and other parts
where data is quite sparse. Figure 1.9 shows a dotplot of such a data set; there is
high concentration in the middle, and relatively few observations stretched out to
either side. Using a small number of equal-width classes results in almost all obser-
vations falling in just one or two of the classes. If a large number of equal-width
classes are used, many classes will have zero frequency. A sound choice is to use a
few wider intervals near extreme observations and narrower intervals in the region
of high concentration.

Lo et L1111

@ L A It ot s et s s By
| | | | | | | |

®) 1 1 1 1 r 1 1 1
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Figure 1.9 Selecting class intervals for “varying density” data: (a) many short equal-width
intervals; (b) a few wide equal-width intervals; (c) unequal-width intervals

Constructing a Histogram for Continuous Data: Unequal Class Widths

After determining frequencies and relative frequencies, calculate the height of
each rectangle using the formula

relative frequency of the class
class width

rectangle height =

The resulting rectangle heights are usually called densities, and the vertical
scale is the density scale. This prescription will also work when class widths
are equal.

Example 1.11 Corrosion of reinforcing steel is a serious problem in concrete structures located in
environments affected by severe weather conditions. For this reason, researchers
have been investigating the use of reinforcing bars made of composite material. One
study was carried out to develop guidelines for bonding glass-fiber-reinforced plas-
tic rebars to concrete (“Design Recommendations for Bond of GFRP Rebars to
Concrete,” J. of Structural Engr., 1996: 247-254). Consider the following 48 obser-
vations on measured bond strength:

115 121 99 93 78 62 66 7.0 134 171 93 56
57 54 52 51 49 107 152 85 42 40 39 38
36 34 206 255 138 126 131 89 82 107 142 76
52 55 51 50 52 48 41 38 37 36 36 36

Class 2—<4 4—<6 6—<8 8—<12 12—-<20 20—-<30
Frequency 9 15 5 9 8 2
Relative frequency .1875 3125 .1042 .1875 .1667 .0417
Density .094 .156 .052 .047 021 .004

The resulting histogram appears in Figure 1.10. The right or upper tail stretches out
much farther than does the left or lower tail—a substantial departure from symmetry.
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Figure 1.10 A Minitab density histogram for the bond strength data of Example 1.11 |

When class widths are unequal, not using a density scale will give a picture
with distorted areas. For equal-class widths, the divisor is the same in each density
calculation, and the extra arithmetic simply results in a rescaling of the vertical axis
(i.e., the histogram using relative frequency and the one using density will have
exactly the same appearance). A density histogram does have one interesting prop-
erty. Multiplying both sides of the formula for density by the class width gives

relative frequency = (class width)(density) = (rectangle width)(rectangle height)
= rectangle area

That is, the area of each rectangle is the relative frequency of the corresponding
class. Furthermore, since the sum of relative frequencies should be 1, the total area
of all rectangles in a density histogram is I. It is always possible to draw a histogram
so that the area equals the relative frequency (this is true also for a histogram of dis-
crete data)—just use the density scale. This property will play an important role in
creating models for distributions in Chapter 4.

Histogram Shapes

Histograms come in a variety of shapes. A unimodal histogram is one that rises to
a single peak and then declines. A bimodal histogram has two different peaks.
Bimodality can occur when the data set consists of observations on two quite differ-
ent kinds of individuals or objects. For example, consider a large data set consisting
of driving times for automobiles traveling between San Luis Obispo, California, and
Monterey, California (exclusive of stopping time for sightseeing, eating, etc.). This
histogram would show two peaks: one for those cars that took the inland route
(roughly 2.5 hours) and another for those cars traveling up the coast (3.5-4 hours).
However, bimodality does not automatically follow in such situations. Only if the
two separate histograms are “far apart” relative to their spreads will bimodality occur
in the histogram of combined data. Thus a large data set consisting of heights of col-
lege students should not result in a bimodal histogram because the typical male
height of about 69 inches is not far enough above the typical female height of about
64-65 inches. A histogram with more than two peaks is said to be multimodal. Of
course, the number of peaks may well depend on the choice of class intervals, par-
ticularly with a small number of observations. The larger the number of classes, the
more likely it is that bimodality or multimodality will manifest itself.

Example 1.12  Figure 1.11(a) shows a Minitab histogram of the weights (Ib) of the 124 players
listed on the rosters of the San Francisco 49ers and the New England Patriots
(teams the author would like to see meet in the Super Bowl) as of Nov. 20, 2009.
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Figure 1.11(b) is a smoothed histogram (actually what is called a density estimate)
of the data from the R software package. Both the histogram and the smoothed his-
togram show three distinct peaks; the one on the right is for linemen, the middle
peak corresponds to linebacker weights, and the peak on the left is for all other
players (wide receivers, quarterbacks, etc.).

14 H N
12

10 -
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[e0)
L

1
180 200 220 240 260 280 300 320 340
Weight
@

Density Estimate
0.000 0.002 0.004 0.006 0.008 0.010 0.012
1

T T T
150 200 250 300 350
Player Weight
(b)

Figure 1.11  NFL player weights (a) Histogram (b) Smoothed histogram [ |

A histogram is symmetric if the left half is a mirror image of the right half. A
unimodal histogram is positively skewed if the right or upper tail is stretched out
compared with the left or lower tail and negatively skewed if the stretching is to the
left. Figure 1.12 shows “smoothed” histograms, obtained by superimposing a
smooth curve on the rectangles, that illustrate the various possibilities.

(b) © (d)

Figure 1.12 Smoothed histograms: (a) symmetric unimodal; (b) bimodal; (c) positively
skewed; and (d) negatively skewed

@

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.2 Pictorial and Tabular Methods in Descriptive Statistics 23

Qualitative Data

Both a frequency distribution and a histogram can be constructed when the data set is
qualitative (categorical) in nature. In some cases, there will be a natural ordering of
classes—for example, freshmen, sophomores, juniors, seniors, graduate students—
whereas in other cases the order will be arbitrary—for example, Catholic, Jewish,
Protestant, and the like. With such categorical data, the intervals above which
rectangles are constructed should have equal width.

Example 1.13  The Public Policy Institute of California carried out a telephone survey of 2501
California adult residents during April 2006 to ascertain how they felt about various
aspects of K-12 public education. One question asked was “Overall, how would you
rate the quality of public schools in your neighborhood today?” Table 1.2 displays
the frequencies and relative frequencies, and Figure 1.13 shows the corresponding
histogram (bar chart).

Table 1.2 Frequency Distribution for the School Rating Data

Rating Frequency Relative Frequency

A 478 191

B 893 .357

C 680 272

D 178 .071

F 100 .040
Don’t know 172 .069
2501 1.000

Chart of Relative Frequency vs Rating

0.4 -
3 0.3
c
[}
>
o
4]
L 0.2
[
=
8
& 01
0.0 T T T T T T
A B C D F  Don’t know

Rating

Figure 1.13 Histogram of the school rating data from Minitab

More than half the respondents gave an A or B rating, and only slightly more than
10% gave a D or F rating. The percentages for parents of public school children were
somewhat more favorable to schools: 24%, 40%, 24%, 6%, 4%, and 2%. |

Multivariate Data

Multivariate data is generally rather difficult to describe visually. Several meth-
ods for doing so appear later in the book, notably scatter plots for bivariate
numerical data.
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| EXERCISES  Section 1.2 (10-32)

10.

11.

12.

13.

Consider the strength data for beams given in Example 1.2.

a. Construct a stem-and-leaf display of the data. What
appears to be a representative strength value? Do the
observations appear to be highly concentrated about the
representative value or rather spread out?

b. Does the display appear to be reasonably symmetric
about a representative value, or would you describe its
shape in some other way?

c. Do there appear to be any outlying strength values?

d. What proportion of strength observations in this sample
exceed 10 MPa?

Every score in the following batch of exam scores is in the
60s, 70s, 80s, or 90s. A stem-and-leaf display with only the
four stems 6, 7, 8, and 9 would not give a very detailed
description of the distribution of scores. In such situations,
it is desirable to use repeated stems. Here we could repeat
the stem 6 twice, using 6L for scores in the low 60s (leaves
0, 1, 2, 3, and 4) and 6H for scores in the high 60s (leaves
5, 6, 7, 8, and 9). Similarly, the other stems can be repeated
twice to obtain a display consisting of eight rows. Construct
such a display for the given scores. What feature of the data
is highlighted by this display?

74 89 80 93 64 67 72 70 66 85 89 81 81
71 74 82 85 63 72 81 81 95 84 81 80 70
69 66 60 83 85 98 84 68 90 82 69 72 87
88

The accompanying specific gravity values for various wood
types used in construction appeared in the article “Bolted
Connection Design Values Based on European Yield
Model” (J. of Structural Engr., 1993: 2169-2186):

31
41
45
.54

.35
41
46
.55

.36
42
46
.58

37
42
48
.66

.38
42
48
.66

40
42
48
.67

40
43
.51
.68

.40
44
.54

.62 .75

Construct a stem-and-leaf display using repeated stems (see
the previous exercise), and comment on any interesting fea-
tures of the display.

Allowable mechanical properties for structural design of
metallic aerospace vehicles requires an approved method
for statistically analyzing empirical test data. The article
“Establishing Mechanical Property Allowables for
Metals” (J. of Testing and Evaluation, 1998: 293-299) used
the accompanying data on tensile ultimate strength (ksi) as
a basis for addressing the difficulties in developing such a
method.

122.2 1242 1243 1256 126.3 1265 1265 127.2 1273
1275 1279 1286 128.8 129.0 129.2 1294 129.6 130.2
1304 130.8 131.3 1314 1314 1315 1316 1316 1318
131.8 1323 1324 1324 1325 1325 1325 1325 1326

132.7
133.2
134.0
134.7
135.2
135.7
135.9
136.6
137.8
138.4

139.

140.9
143.6

14.

132.9
133.3
134.0
134.7
135.2
135.8
136.0
136.8
137.8
138.4
1 1395
140.9
143.8

133.0
133.3
134.0
134.7
1353
135.8
136.0
136.9
137.8
138.4
139.6
141.2
143.8

1331
1335
134.1
134.8
1353
135.8
136.1
136.9
137.9
1385
139.8
141.4
143.9

133.1
1335
134.2
134.8
1354
135.8
136.2
137.0
137.9
138.5
139.8
1415
1441

1331
1335
134.3
134.8
1355
135.8
136.2
137.1
138.2
138.6
140.0
141.6
144.5

133.1
133.8
134.4
134.9
1355
135.9
136.3
137.2
138.2
138.7
140.0
142.9
1445

133.2
133.9
134.4
134.9
135.6
135.9
136.4
137.6
138.3
138.7
140.7
143.4
1477

133.2
134.0
134.6
135.2
135.6
135.9
136.4
137.6
138.3
139.0
140.7
1435
147.7

a. Construct a stem-and-leaf display of the data by first
deleting (truncating) the tenths digit and then repeat-
ing each stem value five times (once for leaves 1 and
2, a second time for leaves 3 and 4, etc.). Why is it rel-
atively easy to identify a representative strength
value?

b. Construct a histogram using equal-width classes with the
first class having a lower limit of 122 and an upper limit
of 124. Then comment on any interesting features of the
histogram.

The accompanying data set consists of observations on
shower-flow rate (L/min) for a sample of n = 129 houses in
Perth, Australia (“An Application of Bayes Methodology to
the Analysis of Diary Records in a Water Use Study,”
J. Amer. Stat. Assoc., 1987: 705-711):

46 123 71 70 40 92 67 69 115 51
112 105 143 80 88 64 51 56 96 75
75 62 58 23 34 104 98 66 37 64
83 65 76 93 92 73 50 63 138 6.2
54 48 75 60 69 108 75 66 50 33
76 39 119 22 150 72 61 153 189 7.2
54 55 43 90 127 113 74 50 35 82
84 73 103 119 60 56 95 93 104 97
51 67 102 62 84 70 48 56 105 146
108 155 75 64 34 55 66 59 150 96
78 70 69 41 36 119 37 57 6.8 113
93 96 104 93 69 98 91 106 45 6.2
83 32 49 50 60 82 63 38 60

a. Construct a stem-and-leaf display of the data.

. What is a typical, or representative, flow rate?

c. Does the display appear to be highly concentrated or
spread out?

d. Does the distribution of values appear to be reasonably
symmetric? If not, how would you describe the departure
from symmetry?

e. Would you describe any observation as being far from
the rest of the data (an outlier)?

o
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15.

Am:

Fr:

16.

17.

18.

Do running times of American movies differ somehow from
running times of French movies? The author investigated
this question by randomly selecting 25 recent movies of
each type, resulting in the following running times:

94 90 95 93128 95125 91104 116 162 102 90
110 92 113 116 90 97 103 95 120 109 91 138
123 116 90 158 122 119 125 90 96 94 137 102 105
106 95 125 122 103 96 111 81113 128 93 92

Construct a comparative stem-and-leaf display by listing
stems in the middle of your paper and then placing the Am
leaves out to the left and the Fr leaves out to the right. Then
comment on interesting features of the display.

The article cited in Example 1.2 also gave the accompany-
ing strength observations for cylinders:

61 58 78 71 72 92 66 83 70 83
78 81 74 85 89 98 97 141 126 112

a. Construct a comparative stem-and-leaf display (see the
previous exercise) of the beam and cylinder data, and
then answer the questions in parts (b)—(d) of Exercise 10
for the observations on cylinders.

b. In what ways are the two sides of the display similar?
Are there any obvious differences between the beam
observations and the cylinder observations?

¢. Construct a dotplot of the cylinder data.

Temperature transducers of a certain type are shipped in
batches of 50. A sample of 60 batches was selected, and the
number of transducers in each batch not conforming to design
specifications was determined, resulting in the following data:

21240132053313247023
04213113412322845131
50232106421603336123
a,

. Determine frequencies and relative frequencies for the
observed values of x = number of nonconforming trans-
ducers in a batch.

b. What proportion of batches in the sample have at most
five nonconforming transducers? What proportion have
fewer than five? What proportion have at least five non-
conforming units?

c. Draw a histogram of the data using relative frequency on
the vertical scale, and comment on its features.

In a study of author productivity (“Lotka’s Test,” Collection
Mgmt., 1982: 111-118), a large number of authors were
classified according to the number of articles they had pub-
lished during a certain period. The results were presented in
the accompanying frequency distribution:

Number

of papers 1 2 3 4 5 6 7 8
Frequency 784 204 127 50 33 28 19 19
Number

of papers 9 10 11 12 13 14 15 16 17

Frequency 6 7 6 7 4 4 5 3 3

19.

20.

21.
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a. Construct a histogram corresponding to this frequency
distribution. What is the most interesting feature of the
shape of the distribution?

b. What proportion of these authors published at least five
papers? At least ten papers? More than ten papers?

c. Suppose the five 15s, three 16s, and three 17s had been
lumped into a single category displayed as “=15.
Would you be able to draw a histogram? Explain.

d. Suppose that instead of the values 15, 16, and 17 being
listed separately, they had been combined into a 15-17
category with frequency 11. Would you be able to draw
a histogram? Explain.

The number of contaminating particles on a silicon wafer prior
to a certain rinsing process was determined for each wafer in
a sample of size 100, resulting in the following frequencies:

Number of particles 0 1 2 3 4 5 6 7

Frequency 1 2 3 12 11 15 18 10
Number of particles 8 9 10 11 12 13 14
Frequency 12 4 5 3 1 2 1

a. What proportion of the sampled wafers had at least one
particle? At least five particles?

b. What proportion of the sampled wafers had between five
and ten particles, inclusive? Strictly between five and ten
particles?

c. Draw a histogram using relative frequency on the vertical
axis. How would you describe the shape of the histogram?

The article “Determination of Most Representative
Subdivision” (J. of Energy Engr., 1993: 43-55) gave data on
various characteristics of subdivisions that could be used in
deciding whether to provide electrical power using over-
head lines or underground lines. Here are the values of the
variable x = total length of streets within a subdivision:

1280 5320 4390 2100 1240 3060 4770
1050 360 3330 3380 340 1000 960
1320 530 3350 540 3870 1250 2400
960 1120 2120 450 2250 2320 2400
3150 5700 5220 500 1850 2460 5850
2700 2730 1670 100 5770 3150 1890
510 240 396 1419 2109

a. Construct a stem-and-leaf display using the thousands
digit as the stem and the hundreds digit as the leaf, and
comment on the various features of the display.

b. Construct a histogram using class boundaries 0, 1000,
2000, 3000, 4000, 5000, and 6000. What proportion of
subdivisions have total length less than 2000? Between
2000 and 4000? How would you describe the shape of
the histogram?

The article cited in Exercise 20 also gave the following val-
ues of the variables y = number of culs-de-sac and
z = number of intersections:

y1010020111210011011
z1861153004400121404
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. Construct a histogram for the y data. What proportion
of these subdivisions had no culs-de-sac? At least one
cul-de-sac?

b. Construct a histogram for the z data. What proportion of

these subdivisions had at most five intersections? Fewer

than five intersections?

22. How does the speed of a runner vary over the course of a
marathon (a distance of 42.195 km)? Consider determining
both the time to run the first 5 km and the time to run
between the 35-km and 40-km points, and then subtracting
the former time from the latter time. A positive value of this
difference corresponds to a runner slowing down toward the
end of the race. The accompanying histogram is based on
times of runners who participated in several different
Japanese marathons (“Factors Affecting Runners’ Marathon
Performance,” Chance, Fall, 1993: 24-30).

What are some interesting features of this histogram? What
is a typical difference value? Roughly what proportion of
the runners ran the late distance more quickly than the early
distance?

23. The article “Statistical Modeling of the Time Course of
Tantrum Anger” (Annals of Applied Stats, 2009: 1013-1034)
discussed how anger intensity in children’s tantrums could
be related to tantrum duration as well as behavioral indica-
tors such as shouting, stamping, and pushing or pulling. The
following frequency distribution was given (and also the cor-
responding histogram):

0—<2: 136
11-<20: 26

2—<4: 92
20—<30: 7

4—<11: 71
30—<40: 3

Draw the histogram and then comment on any interesting
features.
Histogram for Exercise 22

Frequency

200

150

100

50

24. The accompanying data set consists of observations on shear
strength (Ib) of ultrasonic spot welds made on a certain type of
alclad sheet. Construct a relative frequency histogram based on
ten equal-width classes with boundaries 4000, 4200, . . . . [The
histogram will agree with the one in “Comparison of Properties
of Joints Prepared by Ultrasonic Welding and Other Means”
(J. of Aircraft, 1983: 552-556).] Comment on its features.

5434 4948 4521 4570 4990 5702 5241
5112 5015 4659 4806 4637 5670 4381
4820 5043 4886 4599 5288 5299 4848
5378 5260 5055 5828 5218 4859 4780
5027 5008 4609 4772 5133 5095 4618
4848 5089 5518 5333 5164 5342 5069
4755 4925 5001 4803 4951 5679 5256
5207 5621 4918 5138 4786 4500 5461
5049 4974 4592 4173 5296 4965 5170
4740 5173 4568 5653 5078 4900 4968
5248 5245 4723 5275 5419 5205 4452
5227 5555 5388 5498 4681 5076 4774
4931 4493 5309 5582 4308 4823 4417
5364 5640 5069 5188 5764 5273 5042
5189 4986

25. A transformation of data values by means of some mathe-
matical function, such as V/x or 1/x, can often yield a set of
numbers that has “nicer” statistical properties than the orig-
inal data. In particular, it may be possible to find a function
for which the histogram of transformed values is more
symmetric (or, even better, more like a bell-shaped curve)
than the original data. As an example, the article “Time
Lapse Cinematographic Analysis of Beryllium-Lung
Fibroblast Interactions” (Environ. Research, 1983: 34-43)
reported the results of experiments designed to study the
behavior of certain individual cells that had been exposed
to beryllium. An important characteristic of such an
individual cell is its interdivision time (IDT). IDTs were
determined for a large number of cells, both in exposed

Time

T L
-100 0 100 200 300
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(treatment) and unexposed (control) conditions. The
authors of the article used a logarithmic transformation,
that is, transformed value = log(original value). Consider
the following representative IDT data:

IDT  log,(IDT) IDT  log,(IDT) IDT  logy(IDT)
28.1 1.45 60.1 1.78 21.0 1.32
312 1.49 237 1.37 223 1.35
13.7 1.14 18.6 1.27 155 1.19
46.0 1.66 21.4 1.33 36.3 1.56
25.8 1.41 26.6 1.42 19.1 1.28
16.8 1.23 26.2 1.42 38.4 158
348 154 320 151 72.8 1.86
62.3 1.79 435 1.64 48.9 1.69
28.0 1.45 17.4 1.24 21.4 1.33
17.9 1.25 38.8 1.59 20.7 1.32
19.5 1.29 306 1.49 57.3 1.76
21.1 1.32 55.6 1.75 40.9 1.61
31.9 1.50 255 1.41

28.9 1.46 52.1 1.72

26.

27.
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Use class intervals 10—<20, 20—<30, ...to construct
a histogram of the original data. Use intervals
1.1-<1.2,12—-<1.3,...to do the same for the trans-
formed data. What is the effect of the transformation?

Automated electron backscattered diffraction is now being
used in the study of fracture phenomena. The following
information on misorientation angle (degrees) was extracted
from the article “Observations on the Faceted Initiation Site
in the Dwell-Fatigue Tested Ti-6242 Alloy: Crystallographic
Orientation and Size Effects (Metallurgical and Materials
Trans., 2006: 1507-1518).

Class: 0—<5 5—<10 10—<15 15-<20
Rel freq: A77 .166 175 .136
Class: 20—<30 30—<40 40—-<60 60—<90
Rel freq: 194 .078 .044 .030

a. Is it true that more than 50% of the sampled angles are
smaller than 15°, as asserted in the paper?

b. What proportion of the sampled angles are at least 30°?

c. Roughly what proportion of angles are between 10°
and 25°?

d. Construct a histogram and comment on any interesting
features.

The paper “Study on the Life Distribution of Microdrills”
(J. of Engr. Manufacture, 2002: 301-305) reported the fol-
lowing observations, listed in increasing order, on drill life-
time (number of holes that a drill machines before it breaks)
when holes were drilled in a certain brass alloy.

11 14 20
5 61 65
81 84 85
105 105 112
161 168 184

23 31
67 68
89 91
118 123
206 248

36
71
93
136
263

39
74
96
139
289

44
76
99
141
322

47 50
78 79
101 104
148 158
388 513

28.

29.

30.

3L
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a. Why can a frequency distribution not be based on the
class intervals 0-50, 50-100, 100-150, and so on?

b. Construct a frequency distribution and histogram of the
data using class boundaries 0, 50, 100, . . ., and then
comment on interesting characteristics.

c. Construct a frequency distribution and histogram of the
natural logarithms of the lifetime observations, and com-
ment on interesting characteristics.

d. What proportion of the lifetime observations in this sam-
ple are less than 100? What proportion of the observa-
tions are at least 200?

Human measurements provide a rich area of application
for statistical methods. The article “A Longitudinal Study
of the Development of Elementary School Children’s
Private Speech” (Merrill-Palmer Q., 1990: 443-463)
reported on a study of children talking to themselves (pri-
vate speech). It was thought that private speech would be
related to 1Q, because I1Q is supposed to measure mental
maturity, and it was known that private speech decreases
as students progress through the primary grades. The
study included 33 students whose first-grade 1Q scores
are given here:

82 96 99 102 103 103 106 107 108 108 108 108
109 110 110 111 113 113 113 113 115 115 118 118
119 121 122 122 127 132 136 140 146

Describe the data and comment on any interesting features.

Consider the following data on types of health complaint
(J = joint swelling, F = fatigue, B = back pain, M =
muscle weakness, C = coughing, N = nose running/
irritation, O = other) made by tree planters. Obtain frequen-
cies and relative frequencies for the various categories, and
draw a histogram. (The data is consistent with percentages
given in the article “Physiological Effects of Work Stress and
Pesticide Exposure in Tree Planting by British Columbia
Silviculture Workers,” Ergonomics, 1993: 951-961.)

0O ONJ CF B B F OJ O OWM
O FF OONUONIJFJ B OC
J 0O0J J FNOBMOJMOSB
0O FJ OOB NICOUOUOWMBF
J O F N

A Pareto diagram is a variation of a histogram for cate-
gorical data resulting from a quality control study. Each cat-
egory represents a different type of product nonconformity
or production problem. The categories are ordered so that
the one with the largest frequency appears on the far left,
then the category with the second largest frequency, and so
on. Suppose the following information on nonconformities
in circuit packs is obtained: failed component, 126; incor-
rect component, 210; insufficient solder, 67; excess solder,
54; missing component, 131. Construct a Pareto diagram.

The cumulative frequency and cumulative relative
frequency for a particular class interval are the sum of
frequencies and relative frequencies, respectively, for that
interval and all intervals lying below it. If, for example,
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there are four intervals with frequencies 9, 16, 13, and 12, Value 0 150 300 450 600
then the cumulative frequencies are 9, 25, 38, and 50, and Cumulative % 0 193 376 62.7 775
the cumulative relative frequencies are .18, .50, .76, and Value 750 900 1050 1200 1350
1.00. Compute the cumulative frequencies and cumulative Cumulative% 872 938 957 986 99.1
relative frequencies for the data of Exercise 24. Value 1500 1650 1800 1950

32. Fire load (MJ/m?) is the heat energy that could be released Cumulative %  99.5 996 99.8 100.0
per square meter of floor area by combustion of contents
and the structure itself. The article “Fire Loads in Office a. Construct a relative frequency histogram and comment
Buildings” (J. of Structural Engr., 1997: 365-368) gave on interesting features.
the following cumulative percentages (read from a graph) b. What proportion of fire loads are less than 600? At least
for fire loads in a sample of 388 rooms: 12007

¢. What proportion of the loads are between 600 and 1200?

I 1.3 Measures of Location

Visual summaries of data are excellent tools for obtaining preliminary impres-
sions and insights. More formal data analysis often requires the calculation and
interpretation of numerical summary measures. That is, from the data we try to
extract several summarizing numbers—numbers that might serve to characterize
the data set and convey some of its salient features. Our primary concern will be
with numerical data; some comments regarding categorical data appear at the end
of the section.

Suppose, then, that our data set is of the form x,, x,, . . ., X,, Where each X; is
a number. What features of such a set of numbers are of most interest and deserve
emphasis? One important characteristic of a set of numbers is its location, and in
particular its center. This section presents methods for describing the location of a
data set; in Section 1.4 we will turn to methods for measuring variability in a set of
numbers.

The Mean

For a given set of numbers x,, X,, . . ., X,, the most familiar and useful measure of
the center is the mean, or arithmetic average of the set. Because we will almost
always think of the x;’s as constituting a sample, we will often refer to the arithmetic
average as the sample mean and denote it by X.

DEFINITION The sample mean X of observations x,, X,, . . ., X, iS given by
n
X:
s Xt Xt X izzl'
x= n o

The numerator of X can be written more informally as X x;, where the sum-
mation is over all sample observations.

For reporting X, we recommend using decimal accuracy of one digit more than the
accuracy of the x;’s. Thus if observations are stopping distances with x, = 125,
X, = 131, and so on, we might have X = 127.3 ft.
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Example 1.14  Caustic stress corrosion cracking of iron and steel has been studied because of fail-
ures around rivets in steel boilers and failures of steam rotors. Consider the accom-
panying observations on x = crack length (um) as a result of constant load stress
corrosion tests on smooth bar tensile specimens for a fixed length of time. (The data
is consistent with a histogram and summary quantities from the article “On the Role
of Phosphorus in the Caustic Stress Corrosion Cracking of Low Alloy Steels,”
Corrosion Science, 1989:; 53-68.)

X, =161X, =9.6 X, =249x, =204%, = 127%, = 21.2%, = 30.2
X; = 258X, = 185X,y = 10.3%;, = 253Xy, = 14.0 X;; = 27.1x,, = 45.0
Xis = 233 Xys = 24.2 %X, = 146 X5 = 8.9 Xjo = 324 Xy, = 11.8X,, = 285

Figure 1.14 shows a stem-and-leaf display of the data; a crack length in the low 20s
appears to be “typical.”

OH | 96 89

1L | 27 03 40 46 18

1IH | 61 85

2L |49 04 12 33 42 Stem: tens digit

2H | 58 53 71 85 Leaf: one and tenths digit
3L | 02 24

3H

4L

4H | 50

Figure 1.14 A stem-and-leaf display of the crack-length data

With > x; = 444.8, the sample mean is

444.8
X= —— =2118
21
a value consistent with information conveyed by the stem-and-leaf display. |

A physical interpretation of X demonstrates how it measures the location (cen-
ter) of a sample. Think of drawing and scaling a horizontal measurement axis, and
then represent each sample observation by a 1-Ib weight placed at the corresponding
point on the axis. The only point at which a fulcrum can be placed to balance the sys-
tem of weights is the point corresponding to the value of X (see Figure 1.15).

Xx=21.18

10 20 30 40

-

Figure 1.15 The mean as the balance point for a system of weights

Just as X represents the average value of the observations in a sample, the
average of all values in the population can be calculated. This average is called the
population mean and is denoted by the Greek letter w. When there are N values in
the population (a finite population), then w = (sum of the N population values)/N.
In Chapters 3 and 4, we will give a more general definition for w that applies to
both finite and (conceptually) infinite populations. Just as X is an interesting and
important measure of sample location, w is an interesting and important (often
the most important) characteristic of a population. In the chapters on statistical
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30 CHAPTER 1 Overview and Descriptive Statistics

inference, we will present methods based on the sample mean for drawing conclu-
sions about a population mean. For example, we might use the sample mean
X = 21.18 computed in Example 1.14 as a point estimate (a single number that is
our “best” guess) of u = the true average crack length for all specimens treated as
described.

The mean suffers from one deficiency that makes it an inappropriate measure
of center under some circumstances: Its value can be greatly affected by the presence
of even a single outlier (unusually large or small observation). In Example 1.14, the
value x,, = 45.0 is obviously an outlier. Without this observation,
X = 399.8/20 = 19.99; the outlier increases the mean by more than 1 um. If the
45.0 um observation were replaced by the catastrophic value 295.0 um, a really
extreme outlier, then X = 694.8/21 = 33.09, which is larger than all but one of the
observations!

A sample of incomes often produces such outlying values (those lucky few
who earn astronomical amounts), and the use of average income as a measure of
location will often be misleading. Such examples suggest that we look for a meas-
ure that is less sensitive to outlying values than X, and we will momentarily pro-
pose one. However, although X does have this potential defect, it is still the most
widely used measure, largely because there are many populations for which an
extreme outlier in the sample would be highly unlikely. When sampling from
such a population (a normal or bell-shaped population being the most important
example), the sample mean will tend to be stable and quite representative of the
sample.

The Median

The word median is synonymous with “middle,” and the sample median is indeed
the middle value once the observations are ordered from smallest to largest. When
the observations are denoted by x,, . . ., x,, we will use the symbol X to represent the
sample median.

DEFINITION The sample median is obtained by first ordering the n observations from
smallest to largest (with any repeated values included so that every sample
observation appears in the ordered list). Then,

[ The single
middle B (n +1
value if n B
is odd

X = 4 The average
of the two
middle
values if n

| is even

th
) ordered value

n th n th
average of (2) and (2 + 1) ordered values

Example 1.15 People not familiar with classical music might tend to believe that a composer’s
instructions for playing a particular piece are so specific that the duration would
not depend at all on the performer(s). However, there is typically plenty of room
for interpretation, and orchestral conductors and musicians take full advantage of
this. The author went to the Web site ArkivMusic.com and selected a sample of
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12 recordings of Beethoven’s Symphony #9 (the “Choral,” a stunningly beautiful
work), yielding the following durations (min) listed in increasing order:

62.3 628 636 652 657 664 674 684 688 70.8 757 79.0
Here is a dotplot of the data:

60 65 70 75 80
Duration

Figure 1.16 Dotplot of the data from Example 1.14

Since n = 12 is even, the sample median is the average of the n/2 = 6" and
(n/2 + 1) = 7" values from the ordered list:
5 = 66.4 + 67.4 — 66.90
2

Note that if the largest observation 79.0 had not been included in the sample, the
resulting sample median for the n = 11 remaining observations would have been the
single middle value 66.4 (the [n + 1]/2 = 6" ordered value, i.e. the 6 value in from
either end of the ordered list). The sample mean isX = >x; = 816.1/12 = 68.01, a
bit more than a full minute larger than the median. The mean is pulled out a bit rela-
tive to the median because the sample “stretches out” somewhat more on the upper
end than on the lower end. [ |

The data in Example 1.15 illustrates an important property of X in contrast to
X: The sample median is very insensitive to outliers. If, for example, we increased
the two largest x;s from 75.7 and 79.0 to 85.7 and 89.0, respectively, X would be
unaffected. Thus, in the treatment of outlying data values, X and X are at opposite
ends of a spectrum. Both quantities describe where the data is centered, but they will
not in general be equal because they focus on different aspects of the sample.

Analogous to X as the middle value in the sample is a middle value in the pop-
ulation, the population median, denoted by . As with X and u, we can think of
using the sample median X to make an inference about w. In Example 1.15, we might
use X = 66.90 as an estimate of the median time for the population of all record-
ings. A median is often used to describe income or salary data (because it is not
greatly influenced by a few large salaries). If the median salary for a sample of engi-
neers were X = $66,416 we might use this as a basis for concluding that the median
salary for all engineers exceeds $60,000.

The population mean w and median w will not generally be identical. If the
population distribution is positively or negatively skewed, as pictured in Figure
1.17, then . # w. When this is the case, in making inferences we must first decide
which of the two population characteristics is of greater interest and then proceed

accordingly.
Wit =i An
(a) Negative skew (b) Symmetric (c) Positive skew

Figure 1.17 Three different shapes for a population distribution
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Other Measures of Location: Quartiles,
Percentiles, and Trimmed Means

The median (population or sample) divides the data set into two parts of equal
size. To obtain finer measures of location, we could divide the data into more
than two such parts. Roughly speaking, quartiles divide the data set into four
equal parts, with the observations above the third quartile constituting the upper
quarter of the data set, the second quartile being identical to the median, and the
first quartile separating the lower quarter from the upper three-quarters. Similarly,
a data set (sample or population) can be even more finely divided using
percentiles; the 99th percentile separates the highest 1% from the bottom 99%,
and so on. Unless the number of observations is a multiple of 100, care must be
exercised in obtaining percentiles. We will use percentiles in Chapter 4 in con-
nection with certain models for infinite populations and so postpone discussion
until that point.

The mean is quite sensitive to a single outlier, whereas the median is
impervious to many outliers. Since extreme behavior of either type might be
undesirable, we briefly consider alternative measures that are neither as sensitive
as X nor as insensitive as X. To motivate these alternatives, note that X and X are
at opposite extremes of the same “family” of measures. The mean is the average
of all the data, whereas the median results from eliminating all but the middle
one or two values and then averaging. To paraphrase, the mean involves trim-
ming 0% from each end of the sample, whereas for the median the maximum
possible amount is trimmed from each end. A trimmed mean is a compromise
between X and X. A 10% trimmed mean, for example, would be computed by
eliminating the smallest 10% and the largest 10% of the sample and then aver-
aging what remains.

Example 1.16  The production of Bidri is a traditional craft of India. Bidri wares (bowls, vessels,
and so on) are cast from an alloy containing primarily zinc along with some copper.
Consider the following observations on copper content (%) for a sample of Bidri
artifacts in London’s Victoria and Albert Museum (“Enigmas of Bidri,” Surface
Engr., 2005: 333-339), listed in increasing order:

20 24 25 26 26 27 27 28 30 31 32 33 33
34 34 36 36 36 36 37 44 46 47 48 53 101

Figure 1.18 is a dotplot of the data. A prominent feature is the single outlier at the
upper end; the distribution is somewhat sparser in the region of larger values than is
the case for smaller values. The sample mean and median are 3.65 and 3.35, respec-
tively. A trimmed mean with a trimming percentage of 100(2/26) = 7.7% results
from eliminating the two smallest and two largest observations; this gives
Xu(z7y = 3.42. Trimming here eliminates the larger outlier and so pulls the trimmed
mean toward the median.

I I I I I I I I I I I
1 2 3 [ 4 5 6 7 8 9 10 11
Xir (7.7)
X
Figure 1.18 Dotplot of copper contents from Example 1.16 [ |
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A trimmed mean with a moderate trimming percentage—someplace
between 5% and 25%—will yield a measure of center that is neither as sensitive
to outliers as is the mean nor as insensitive as the median. If the desired
trimming percentage is 100a% and na is not an integer, the trimmed mean
must be calculated by interpolation. For example, consider o = .10 for a
10% trimming percentage and n = 26 as in Example 1.16. Then X, would be
the appropriate weighted average of the 7.7% trimmed mean calculated there
and the 11.5% trimmed mean resulting from trimming three observations from
each end.

Categorical Data and Sample Proportions

When the data is categorical, a frequency distribution or relative frequency dis-
tribution provides an effective tabular summary of the data. The natural numer-
ical summary quantities in this situation are the individual frequencies and the
relative frequencies. For example, if a survey of individuals who own digital
cameras is undertaken to study brand preference, then each individual in the
sample would identify the brand of camera that he or she owned, from which we
could count the number owning Canon, Sony, Kodak, and so on. Consider sam-
pling a dichotomous population—one that consists of only two categories (such
as voted or did not vote in the last election, does or does not own a digital cam-
era, etc.). If we let x denote the number in the sample falling in category 1, then
the number in category 2 is n — x. The relative frequency or sample proportion
in category 1 is x/n and the sample proportion in category 2 is 1 — x/n. Let’s
denote a response that falls in category 1 by a 1 and a response that falls in cat-
egory 2 by a 0. A sample size of n = 10 might then yield the responses 1, 1, 0,
1,1,1,0,0, 1, 1. The sample mean for this numerical sample is (since number
ofIs=x=17)

x1+---+xn_l+1+0+"'+1+1_l—§—sam le proportion
_ _ o =0 n- ple prop

More generally, focus attention on a particular category and code the sample
results so that a 1 is recorded for an observation in the category and a 0 for an
observation not in the category. Then the sample proportion of observations in the
category is the sample mean of the sequence of 1s and 0s. Thus a sample mean can
be used to summarize the results of a categorical sample. These remarks also apply
to situations in which categories are defined by grouping values in a numerical sam-
ple or population (e.g., we might be interested in knowing whether individuals have
owned their present automobile for at least 5 years, rather than studying the exact
length of ownership).

Analogous to the sample proportion x/n of individuals or objects falling in a
particular category, let p represent the proportion of those in the entire population
falling in the category. As with x/n, p is a quantity between 0 and 1, and while x/n
is a sample characteristic, p is a characteristic of the population. The relationship
between the two parallels the relationship between X and & and between X and w.
In particular, we will subsequently use x/n to make inferences about p. If, for
example, a sample of 100 car owners reveals that 22 owned their car at least 5
years, then we might use 22/100 = .22 as a point estimate of the proportion of all
owners who have owned their car at least 5 years. With k categories (k > 2), we
can use the k sample proportions to answer questions about the population pro-
portions py, . . ., Py
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EXERCISES  Section 1.3 (33-43)

33.

35.

The May 1, 2009 issue of The Montclarian reported the fol-
lowing home sale amounts for a sample of homes in Alameda,
CA that were sold the previous month (1000s of $):

590 815 575 608 350 1285 408 540 555 679

a. Calculate and interpret the sample mean and median.

b. Suppose the 6" observation had been 985 rather than
1285. How would the mean and median change?

c. Calculate a 20% trimmed mean by first trimming the two
smallest and two largest observations.

d. Calculate a 15% trimmed mean.

. Exposure to microbial products, especially endotoxin, may

have an impact on vulnerability to allergic diseases. The
article “Dust Sampling Methods for Endotoxin—An
Essential, But Underestimated Issue” (Indoor Air, 2006:
20-27) considered various issues associated with determin-
ing endotoxin concentration. The following data on concen-
tration (EU/mg) in settled dust for one sample of urban
homes and another of farm homes was kindly supplied by
the authors of the cited article.

U: 6.0 5.0 11.0 33.0 4.0 5.0 80.0 18.0 35.0 17.0 23.0
F: 40 140 11.0 9.0 9.0 80 4.0 200 50 8.9 21.0
92 30 20 03

a. Determine the sample mean for each sample. How do
they compare?

b. Determine the sample median for each sample. How do
they compare? Why is the median for the urban sample
so different from the mean for that sample?

c. Calculate the trimmed mean for each sample by deleting
the smallest and largest observation. What are the corre-
sponding trimming percentages? How do the values of
these trimmed means compare to the corresponding
means and medians?

The minimum injection pressure (psi) for injection molding
specimens of high amylose corn was determined for eight
different specimens (higher pressure corresponds to greater
processing difficulty), resulting in the following observa-
tions (from “Thermoplastic Starch Blends with a
Polyethylene-Co-Vinyl Alcohol: Processability and Physical
Properties,” Polymer Engr. and Science, 1994: 17-23):

150 13.0 18.0 145 120 110 89 8.0

a. Determine the values of the sample mean, sample
median, and 12.5% trimmed mean, and compare these
values.

b. By how much could the smallest sample observation,
currently 8.0, be increased without affecting the value of
the sample median?

c. Suppose we want the values of the sample mean and
median when the observations are expressed in kilograms
per square inch (ksi) rather than psi. Is it necessary to

36.

37.

38.

39.

reexpress each observation in ksi, or can the values
calculated in part (a) be used directly? [Hint:
1 kg =22 Ib]

A sample of 26 offshore oil workers took part in a simulated
escape exercise, resulting in the accompanying data on time
(sec) to complete the escape (“Oxygen Consumption and
Ventilation During Escape from an Offshore Platform,”
Ergonomics, 1997: 281-292):

389 356 359 363 375 424 325 394 402
373 373 370 364 366 364 325 339 393
392 369 374 359 356 403 334 397

a. Construct a stem-and-leaf display of the data. How does it
suggest that the sample mean and median will compare?

b. Calculate the values of the sample mean and median.
[Hint: ¥x; = 9638.]

c. By how much could the largest time, currently 424, be
increased without affecting the value of the sample
median? By how much could this value be decreased
without affecting the value of the sample median?

d. What are the values of X and X when the observations are
reexpressed in minutes?

The article “Snow Cover and Temperature Relationships in
North America and Eurasia” (J. Climate and Applied
Meteorology, 1983: 460-469) used statistical techniques to
relate the amount of snow cover on each continent to aver-
age continental temperature. Data presented there included
the following ten observations on October snow cover for
Eurasia during the years 1970-1979 (in million km?):

6.5 12.0 149 10.0 10.7 79 219 125 145 9.2

What would you report as a representative, or typical, value
of October snow cover for this period, and what prompted
your choice?

Blood pressure values are often reported to the nearest
5 mmHg (100, 105, 110, etc.). Suppose the actual blood
pressure values for nine randomly selected individuals are

1186 1274 1384 130.0 113.7 122.0 108.3
1315 1332

a. What is the median of the reported blood pressure values?

b. Suppose the blood pressure of the second individual is
127.6 rather than 127.4 (a small change in a single
value). How does this affect the median of the reported
values? What does this say about the sensitivity of the
median to rounding or grouping in the data?

The propagation of fatigue cracks in various aircraft parts
has been the subject of extensive study in recent years. The
accompanying data consists of propagation lives (flight
hours/10%) to reach a given crack size in fastener holes
intended for use in military aircraft (“Statistical Crack
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Propagation in Fastener Holes Under Spectrum Loading,”
J. Aircraft, 1983: 1028-1032):

863 .865 913 915 937 .983 1.007

1.011 1.064 1109 1132 1140 1.153 1253 1.39%

40.

41.

a. Compute and compare the values of the sample mean
and median.

b. By how much could the largest sample observation be
decreased without affecting the value of the median?

Compute the sample median, 25% trimmed mean, 10%
trimmed mean, and sample mean for the lifetime data given
in Exercise 27, and compare these measures.

A sample of n = 10 automobiles was selected, and each
was subjected to a 5-mph crash test. Denoting a car with no
visible damage by S (for success) and a car with such dam-

42.

1.4 Measures of Variability 35

c. Suppose it is decided to include 15 more cars in the
experiment. How many of these would have to be S’s to
give x/n = .80 for the entire sample of 25 cars?

a. If a constant c is added to each x; in a sample, yielding
y; = X; + ¢, how do the sample mean and median of the
y;s relate to the mean and median of the x;s? Verify your
conjectures.

b. If each x; is multiplied by a constant c, yielding y; = cx;,
answer the question of part (a). Again, verify your
conjectures.

. An experiment to study the lifetime (in hours) for a certain

type of component involved putting ten components into
operation and observing them for 100 hours. Eight of the
components failed during that period, and those lifetimes
were recorded. Denote the lifetimes of the two components

still functioning after 100 hours by 100+ . The resulting
sample observations were

age by F, results were as follows:

S SFSSSFFSS

48 79 100+ 35 92 86 57 100+ 17 29

a. What is the value of the sample proportion of successes
x/n?

b. Replace each S with a 1 and each F with a 0. Then cal-
culate x for this numerically coded sample. How does X
compare to x/n?

Which of the measures of center discussed in this section
can be calculated, and what are the values of those meas-
ures? [Note: The data from this experiment is said to be
“censored on the right.”]

I 1.4 Measures of Variability

Reporting a measure of center gives only partial information about a data set or dis-
tribution. Different samples or populations may have identical measures of center
yet differ from one another in other important ways. Figure 1.19 shows dotplots of
three samples with the same mean and median, yet the extent of spread about the
center is different for all three samples. The first sample has the largest amount of
variability, the third has the smallest amount, and the second is intermediate to the
other two in this respect.

* * * * * * *
©) O 00000 O ©)
® o 00000 O [ ]

30 40 50 60 70

Figure 1.19 Samples with identical measures of center but different amounts of variability

Measures of Variability for Sample Data

The simplest measure of variability in a sample is the range, which is the difference
between the largest and smallest sample values. The value of the range for sample 1
in Figure 1.19 is much larger than it is for sample 3, reflecting more variability in the
first sample than in the third. A defect of the range, though, is that it depends on only
the two most extreme observations and disregards the positions of the remaining
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36 CHAPTER 1 Overview and Descriptive Statistics

n — 2values. Samples 1 and 2 in Figure 1.19 have identical ranges, yet when we take
into account the observations between the two extremes, there is much less variabil-
ity or dispersion in the second sample than in the first.

Our primary measures of variability involve the deviations from the mean,
X, — X, X, — X, ..., X, — X. That is, the deviations from the mean are obtained by
subtracting X from each of the n sample observations. A deviation will be positive if
the observation is larger than the mean (to the right of the mean on the measurement
axis) and negative if the observation is smaller than the mean. If all the deviations
are small in magnitude, then all x;s are close to the mean and there is little variabil-
ity. Alternatively, if some of the deviations are large in magnitude, then some x;s lie
far from X, suggesting a greater amount of variability. A simple way to combine the
deviations into a single quantity is to average them. Unfortunately, this is a bad idea:

n
sum of deviations = >, (x, — X) = 0
i=1

so that the average deviation is always zero. The verification uses several standard
rules of summation and the factthat X =X + X + - -+ + X = nX:

S -9 = Sx - Sx= S - = Sx - o 23w ) =0

How can we prevent negative and positive deviations from counteracting one another
when they are combined? One possibility is to work with the absolute values of the
deviations and calculate the average absolute deviation > |x, — X |/n. Because the
absolute value operation leads to a number of theoretical difficulties, consider
instead the squared deviations (x, — X)?, (X, — X)?, ..., (X, — X)?. Rather than use
the average squared deviation > (x, — X)2/n, for several reasons we divide the sum
of squared deviations by n — 1 rather than n.

DEFINITION The sample variance, denoted by s?, is given by

_ E(Xi _i)z _ Sxx
n—-—1 n—1

SZ

The sample standard deviation, denoted by s, is the (positive) square root of
the variance:

s = \Vs?

Note that s? and s are both nonnegative. The unit for s is the same as the unit for each
of the x;s. If, for example, the observations are fuel efficiencies in miles per gallon,
then we might have s = 2.0 mpg. A rough interpretation of the sample standard
deviation is that it is the size of a typical or representative deviation from the sam-
ple mean within the given sample. Thus if s = 2.0 mpg, then some x;’s in the sam-
ple are closer than 2.0 to X, whereas others are farther away; 2.0 is a representative
(or “standard”) deviation from the mean fuel efficiency. If s = 3.0 for a second sam-
ple of cars of another type, a typical deviation in this sample is roughly 1.5 times
what it is in the first sample, an indication of more variability in the second sample.

Example 1.17 The Web site www.fueleconomy.gov contains a wealth of information about fuel
characteristics of various vehicles. In addition to EPA mileage ratings, there are
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many vehicles for which users have reported their own values of fuel efficiency
(mpg). Consider the following sample of n = 11 efficiencies for the 2009 Ford
Focus equipped with an automatic transmission (for this model, EPA reports an over-
all rating of 27 mpg—-24 mpg for city driving and 33 mpg for highway driving):

Car X, X; — X (X, — X)?
1 27.3 —5.96 35.522
2 27.9 —5.36 28.730
3 32.9 —0.36 0.130
4 35.2 1.94 3.764
5 44.9 11.64 135.490
6 39.9 6.64 44.090
7 30.0 —3.26 10.628
8 29.7 —3.56 12.674
9 28.5 —4.76 22.658
10 32.0 —1.26 1.588
11 37.6 4.34 18.836

= 33.26

x|

Sx = 365.9 S —X) = .04 > (% — X)* = 314.106

Effects of rounding account for the sum of deviations not being exactly zero. The
numerator of s?is S,, = 314.106, from which
Si 314.106

8= S = T =314l s =560

The size of a representative deviation from the sample mean 33.26 is roughly 5.6 mpg.
Note: Of the nine people who also reported driving behavior, only three did more
than 80% of their driving in highway mode; we bet you can guess which cars they
drove. We haven’t a clue why all 11 reported values exceed the EPA figure—maybe
only drivers with really good fuel efficiencies communicate their results. |

Motivation for s2

To explain the rationale for the divisor n — 1 in s?, note first that whereas s? meas-
ures sample variability, there is a measure of variability in the population called the
population variance. We will use o2 (the square of the lowercase Greek letter sigma)
to denote the population variance and o to denote the population standard deviation
(the square root of o?). When the population is finite and consists of N values,

N
o2 = X (% — wN
i=1

which is the average of all squared deviations from the population mean (for the pop-
ulation, the divisor is N and not N — 1). More general definitions of o appear in
Chapters 3 and 4.

Just as X will be used to make inferences about the population mean w, we
should define the sample variance so that it can be used to make inferences about o2,
Now note that o2 involves squared deviations about the population mean w. If we actu-
ally knew the value of u, then we could define the sample variance as the average
squared deviation of the sample x;s about w. However, the value of w is almost never
known, so the sum of squared deviations about X must be used. But the x;s tend to be
closer to their average X than to the population average w, so to compensate for this
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38 CHAPTER 1 Overview and Descriptive Statistics

the divisor n — 1 is used rather than n. In other words, if we used a divisor n in the
sample variance, then the resulting quantity would tend to underestimate o (produce
estimated values that are too small on the average), whereas dividing by the slightly
smaller n — 1 corrects this underestimating.

It is customary to refer to s? as being based on n — 1 degreesof freedom (df).
This terminology reflects the fact that although s? is based on the n quantities

X; — X, X, — X, ..., X, — X, these sum to 0O, so specifying the values of any n — 1
of the quantities determines the remaining value. For example, if n = 4 and
X; — X =28, % —X=—6,and x, — X = —4, then automatically x, — X = 2, so

only three of the four values of x; — X are freely determined (3 df).

A Computing Formula for s?

It is best to obtain s? from statistical software or else use a calculator that allows you
to enter data into memory and then view s? with a single keystroke. If your calcula-
tor does not have this capability, there is an alternative formula for S that avoids
calculating the deviations. The formula involves both (3x;)2, summing and then
squaring, and > x?, squaring and then summing.

An alternative expression for the numerator of s? is

2
Sy = S0 - 0 = 55t — 2

n

Proof Because X = Sx/n, nx2 = (3x;)2/n. Then,
(X = X)? = BXF - 2 x; + X)) = Zxf - X Zx; + Z(X)
= >x2 — 2X - nX + n(x)? = 3x? — n(X)?

Example 1.18 Traumatic knee dislocation often requires surgery to repair ruptured ligaments. One
measure of recovery is range of motion (measured as the angle formed when, start-
ing with the leg straight, the knee is bent as far as possible). The given data on post-
surgical range of motion appeared in the article “Reconstruction of the Anterior and

Posterior Cruciate Ligaments After Knee Dislocation” (Amer. J. Sports Med., 1999:
189-197):

154 142 137 133 122 126 135 135 108 120 127 134 122

The sum of these 13 sample observations is Xx; = 1695, and the sum of their
squares is

Sx2 = (154)2 + (142)2 + -+ + (122)? = 222,581
Thus the numerator of the sample variance is
S = XX — [(Zx)?]/n = 222,581 — (1695)%/13 = 1579.0769
from which s? = 1579.0769/12 = 131.59 and s = 11.47. |

Both the defining formula and the computational formula for s? can be sensitive to
rounding, so as much decimal accuracy as possible should be used in intermediate
calculations.

Several other properties of s? can enhance understanding and facilitate com-
putation.
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PROPOSITION Let x;, X,, . . ., X, be a sample and ¢ be any nonzero constant.
LIfy,=x+¢Y,=X+C...,¥ =X +c thensi = sZ and
2. Ify; = cxp, ..., Y, = ox,, thens? = c%Z's, = [c]s,

where s2is the sample variance of the x’s and 5§ is the sample variance of the y’s.

In words, Result 1 says that if a constant ¢ is added to (or subtracted from) each data
value, the variance is unchanged. This is intuitive, since adding or subtracting c
shifts the location of the data set but leaves distances between data values un-
changed. According to Result 2, multiplication of each x; by c results in s? being mul-
tiplied by a factor of c2 These properties can be proved by noting in Result 1 that
y = X + cand in Result 2 thaty = cx.

Boxplots

Stem-and-leaf displays and histograms convey rather general impressions about a
data set, whereas a single summary such as the mean or standard deviation focuses
on just one aspect of the data. In recent years, a pictorial summary called a boxplot
has been used successfully to describe several of a data set’s most prominent fea-
tures. These features include (1) center, (2) spread, (3) the extent and nature of any
departure from symmetry, and (4) identification of “outliers,” observations that lie
unusually far from the main body of the data. Because even a single outlier can dras-
tically affect the values of X and s, a boxplot is based on measures that are “resist-
ant” to the presence of a few outliers—the median and a measure of variability called
the fourth spread.

DEFINITION Order the n observations from smallest to largest and separate the smallest half
from the largest half; the median X is included in both halves if n is odd. Then
the lower fourth is the median of the smallest half and the upper fourth is
the median of the largest half. A measure of spread that is resistant to outliers
is the fourth spread f,, given by

f, = upper fourth — lower fourth

Roughly speaking, the fourth spread is unaffected by the positions of those observations
in the smallest 25% or the largest 25% of the data. Hence it is resistant to outliers.
The simplest boxplot is based on the following five-number summary:

smallestx; lower fourth median upper fourth largest x;

First, draw a horizontal measurement scale. Then place a rectangle above this axis;
the left edge of the rectangle is at the lower fourth, and the right edge is at the upper
fourth (so box width = f,). Place a vertical line segment or some other symbol
inside the rectangle at the location of the median; the position of the median symbol
relative to the two edges conveys information about skewness in the middle 50% of
the data. Finally, draw “whiskers” out from either end of the rectangle to the small-
est and largest observations. A boxplot with a vertical orientation can also be drawn
by making obvious modifications in the construction process.
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Example 1.19 Ultrasound was used to gather the accompanying corrosion data on the thickness of
the floor plate of an aboveground tank used to store crude oil (“Statistical Analysis
of UT Corrosion Data from Floor Plates of a Crude Oil Aboveground Storage Tank,”
Materials Eval., 1994: 846-849); each observation is the largest pit depth in the
plate, expressed in milli-in.

40 52 55 60 70 75 85 85 90 90 92 94 94 95 98 100 115 125 125‘

The five-number summary is as follows:

smallest x; = 40 lower fourth = 725 X = 90 upper fourth = 96.5
largest x; = 125

Figure 1.20 shows the resulting boxplot. The right edge of the box is much closer to
the median than is the left edge, indicating a very substantial skew in the middle half
of the data. The box width (f,) is also reasonably large relative to the range of the
data (distance between the tips of the whiskers).

—t —ttt—t—t—— Depth
40 50 60 70 80 90 100 110 120 130
Figure 1.20 A boxplot of the corrosion data

Figure 1.21 shows Minitab output from a request to describe the corrosion data. Q1
and Q3 are the lower and upper quartiles; these are similar to the fourths but are cal-
culated in a slightly different manner. SE Mean is s/V/n; this will be an important
quantity in our subsequent work concerning inferences about .

Vari abl e N Mean Median TrMean StDev SE Mean
dept h 19 86. 32 90. 00 86.76 23.32 5.35
Variable M nimm Maximum Q (2]

dept h 40. 00 125.00 70.00 98. 00

Figure 1.21 Minitab description of the pit-depth data [ |

Boxplots That Show Outliers

A boxplot can be embellished to indicate explicitly the presence of outliers. Many
inferential procedures are based on the assumption that the population distribution is
normal (a certain type of bell curve). Even a single extreme outlier in the sample
warns the investigator that such procedures may be unreliable, and the presence of
several mild outliers conveys the same message.

DEFINITION Any observation farther than 1.5f; from the closest fourth is an outlier. An outlier
is extremeif it is more than 3f; from the nearest fourth, and it is mild otherwise.

Let’s now modify our previous construction of a boxplot by drawing a whisker
out from each end of the box to the smallest and largest observations that are not
outliers. Each mild outlier is represented by a closed circle and each extreme outlier
by an open circle. Some statistical computer packages do not distinguish between
mild and extreme outliers.
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Example 1.20  The Clean Water Act and subsequent amendments require that all waters in the United
States meet specific pollution reduction goals to ensure that water is “fishable and
swimmable.” The article “Spurious Correlation in the USEPA Rating Curve Method
for Estimating Pollutant Loads” (J. of Environ. Engr., 2008: 610-618) investigated var-
ious techniques for estimating pollutant loads in watersheds; the authors “discuss the
imperative need to use sound statistical methods” for this purpose. Among the data
considered is the following sample of TN (total nitrogen) loads (kg N/day) from a par-
ticular Chesapeake Bay location, displayed here in increasing order.

9.69 1316 17.09 1812 2370 24.07 2429 2643
30.75 3154 35.07 36.99 40.32 4251 4564 48.22
49.98 50.06 55.02 57.00 5841 6131 6425 65.24
66.14 67.68 8140 90.80 9217 9242 100.82 101.94

103.61 106.28 106.80 108.69 114.61 120.86 124.54 143.27

143.75 149.64 167.79 18250 19255 193.53 27157 292.61

31245 352.09 37147 44468 460.86 563.92 690.11 826.54
1529.35

Relevant summary quantities are

X = 92.17 lower 41 = 45.64 upper 4" = 167.79
f,=12215  15f = 183.225  3f = 366.45

Subtracting 1.5f, from the lower 4™ gives a negative number, and none of the obser-
vations are negative, so there are no outliers on the lower end of the data. However,

upper 4" + 1.5f, = 351.015 upper 4 + 3f, = 534.24

Thus the four largest observations—563.92, 690.11, 826.54, and 1529.35—are
extreme outliers, and 352.09, 371.47, 444.68, and 460.86 are mild outliers.

The whiskers in the boxplot in Figure 1.22 extend out to the smallest observa-
tion, 9.69, on the low end and 312.45, the largest observation that is not an outlier,
on the upper end. There is some positive skewness in the middle half of the data (the
median line is somewhat closer to the left edge of the box than to the right edge) and
a great deal of positive skewness overall.

: : : : : : : : —> load
0 200 400 600 800 1000 1200 1400 1600
Daily nitrogen load

Figure 1.22 A boxplot of the nitrogen load data showing mild and extreme outliers u

Comparative Boxplots

A comparative or side-by-side boxplot is a very effective way of revealing similari-
ties and differences between two or more data sets consisting of observations on the
same variable—fuel efficiency observations for four different types of automobiles,
crop yields for three different varieties, and so on.
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Example 1.21 In recent years, some evidence suggests that high indoor radon concentration may be
linked to the development of childhood cancers, but many health professionals remain
unconvinced. A recent article (“Indoor Radon and Childhood Cancer,” The Lancet,
1991: 1537-1538) presented the accompanying data on radon concentration (Bg/m?3) in
two different samples of houses. The first sample consisted of houses in which a child
diagnosed with cancer had been residing. Houses in the second sample had no recorded
cases of childhood cancer. Figure 1.23 presents a stem-and-leaf display of the data.

1. Cancer 2. No cancer
9683795 | 0 | 95768397678993
86071815066815233150 | 1 | 12271713114
12302731 | 2 | 99494191
8349 | 3 | 839
51| 4
7|15 55
6
7 Stem: Tens digit
HI: 210 8 | 5 Leaf: Onesdigit

Figure 1.23  Stem-and-leaf display for Example 1.21

Numerical summary quantities are as follows:

X X s fe

Cancer 22.8 16.0 31.7 11.0
No cancer 19.2 12.0 17.0 18.0

The values of both the mean and median suggest that the cancer sample is centered
somewhat to the right of the no-cancer sample on the measurement scale. The mean,
however, exaggerates the magnitude of this shift, largely because of the observation
210 in the cancer sample. The values of s suggest more variability in the cancer sam-
ple than in the no-cancer sample, but this impression is contradicted by the fourth
spreads. Again, the observation 210, an extreme outlier, is the culprit. Figure 1.24
shows a comparative boxplot from the S-Plus computer package. The no-cancer box

Radon
concentration

200 —

150 —

100 —

No cancer Cancer

Figure 1.24 A boxplot of the data in Example 1.21, from S-Plus
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is stretched out compared with the cancer box (f, = 18 vs. f, = 11), and the positions
of the median lines in the two boxes show much more skewness in the middle half of
the no-cancer sample than the cancer sample. Outliers are represented by horizontal
line segments, and there is no distinction between mild and extreme outliers. [ |

| EXERCISES  Section 1.4 (44-61)

44,

The article “Oxygen Consumption During Fire
Suppression: Error of Heart Rate Estimation” (Ergonomics,
1991: 1469-1474) reported the following data on oxygen
consumption (mL/kg/min) for a sample of ten firefighters
performing a fire-suppression simulation:

29.5 493 30.6 28.2 28.0 26.3 339 294 235 316

45.

46.

47.

Compute the following:

a. The sample range

b. The sample variance s? from the definition (i.e., by first
computing deviations, then squaring them, etc.)

c. The sample standard deviation

d. s? using the shortcut method

The value of Young’s modulus (GPa) was determined for
cast plates consisting of certain intermetallic substrates,
resulting in the following sample observations (“Strength
and Modulus of a Molybdenum-Coated Ti-25AI-10Nb-3U-
1Mo Intermetallic,” J. of Materials Engr. and Performance,
1997: 46-50):

1164 1159 1146 1152 11538

a. Calculate x and the deviations from the mean.

b. Use the deviations calculated in part (a) to obtain the
sample variance and the sample standard deviation.

c. Calculate s? by using the computational formula for the
numerator S,,.

d. Subtract 100 from each observation to obtain a sample of
transformed values. Now calculate the sample variance
of these transformed values, and compare it to s? for the
original data.

The accompanying observations on stabilized viscosity (cP)
for specimens of a certain grade of asphalt with 18% rubber
added are from the article “Viscosity Characteristics of
Rubber-Modified Asphalts” (J. of Materials in Civil Engr.,
1996: 153-156):

2781 2900 3013 2856 2888

a. What are the values of the sample mean and sample
median?

b. Calculate the sample variance using the computational
formula. [Hint: First subtract a convenient number from
each observation.]

Calculate and interpret the values of the sample median, sam-
ple mean, and sample standard deviation for the following
observations on fracture strength (MPa, read from a graph in

mCc

49.

50.

“Heat-Resistant Active Brazing of Silicon Nitride: Mechanical
Evaluation of Braze Joints,” Welding J., August, 1997):

87 93 96 98 105 114 128 131 142 168

. Exercise 34 presented the following data on endotoxin con-

centration in settled dust both for a sample of urban homes
and for a sample of farm homes:

6.0 5.0 11.0 33.0 4.0 5.0 80.0 18.0 35.0 17.0 23.0
40 140 110 9.09.0 80 4.0 200 50 89 210
92 30 20 03

a. Determine the value of the sample standard deviation for
each sample, interpret these values, and then contrast
variability in the two samples. [Hint: Y x; = 237.0 for
the urban sample and = 128.4 for the farm sample, and
>xZ = 10,079 for the urban sample and 1617.94 for the
farm sample.]

b. Compute the fourth spread for each sample and compare.
Do the fourth spreads convey the same message about
variability that the standard deviations do? Explain.

¢. The authors of the cited article also provided endotoxin
concentrations in dust bag dust:

34.0 49.0 13.0 33.0 24.0 24.0 35.0 104.0 34.0 40.0 38.0 1.0
2.064.0 6.017.035.011.017.0 13.0 5.027.023.0
28.010.013.0 0.2

Construct a comparative boxplot (as did the cited paper) and
compare and contrast the four samples.

A study of the relationship between age and various visual
functions (such as acuity and depth perception) reported the
following observations on the area of scleral lamina (mm?)
from human optic nerve heads (“Morphometry of Nerve
Fiber Bundle Pores in the Optic Nerve Head of the Human,”
Experimental Eye Research, 1988: 559-568):

275 262 274 385 234 274 393 421 3.88
433 346 452 243 365 278 3.56 3.01

a. Calculate 3% and > x?2
b. Use the values calculated in part (a) to compute the sam-
ple variance s? and then the sample standard deviation s.

In 1997 a woman sued a computer keyboard manufacturer,
charging that her repetitive stress injuries were caused by
the keyboard (Genessy v. Digital Equipment Corp.). The
injury awarded about $3.5 million for pain and suffering,
but the court then set aside that award as being unreasonable
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51

52.

53.

CHAPTER 1 Overview and Descriptive Statistics

compensation. In making this determination, the court iden-
tified a “normative” group of 27 similar cases and specified
a reasonable award as one within two standard deviations of
the mean of the awards in the 27 cases. The 27 awards were
(in $1000s) 37, 60, 75, 115, 135, 140, 149, 150, 238, 290,
340, 410, 600, 750, 750, 750, 1050, 1100, 1139, 1150, 1200,
1200, 1250, 1576, 1700, 1825, and 2000, from which
>x; = 20,179, S x? = 24,657,511. What is the maximum
possible amount that could be awarded under the two-
standard-deviation rule?

The article “A Thin-Film Oxygen Uptake Test for the
Evaluation of Automotive Crankcase Lubricants”
(Lubric. Engr., 1984: 75-83) reported the following data
on oxidation-induction time (min) for various commer-
cial oils:

87 103 130 160 180 195 132 145 211 105 145
153 152 138 87 99 93 119 129

a. Calculate the sample variance and standard deviation.

b. If the observations were reexpressed in hours, what
would be the resulting values of the sample variance and
sample standard deviation? Answer without actually per-
forming the reexpression.

The first four deviations from the mean in a sample of
n = 5 reaction times were .3, .9, 1.0, and 1.3. What is the
fifth deviation from the mean? Give a sample for which
these are the five deviations from the mean.

A mutual fund is a professionally managed investment
scheme that pools money from many investors and
invests in a variety of securities. Growth funds focus pri-
marily on increasing the value of investments, whereas
blended funds seek a balance between current income
and growth. Here is data on the expense ratio (expenses
as a % of assets, from www.morningstar.com) for sam-
ples of 20 large-cap balanced funds and 20 large-cap
growth funds (“large-cap” refers to the sizes of compa-
nies in which the funds invest; the population sizes are
825 and 762, respectively):

Bl 1.03 1.23 1.10 1.64 1.30
1.27 1.25 0.78 1.05 0.64
0.94 2.86 1.05 0.75 0.09
0.79 161 1.26 0.93 0.84
Gr 0.52 1.06 1.26 2.17 1.55
0.99 1.10 1.07 1.81 2.05
0.91 0.79 1.39 0.62 1.52
1.02 1.10 1.78 1.01 1.15

a. Calculate and compare the values of X, X, and s for the
two types of funds.

b. Construct a comparative boxplot for the two types of
funds, and comment on interesting features.

Grip is applied to produce normal surface forces that com-
press the object being gripped. Examples include two

16
98
172
294

55.

56.

people shaking hands, or a nurse squeezing a patient’s fore-
arm to stop bleeding. The article “Investigation of Grip
Force, Normal Force, Contact Area, Hand Size, and Handle
Size for Cylindrical Handles” (Human Factors, 2008:
734-744) included the following data on grip strength (N)
for a sample of 42 individuals:

18 18 26 33 41 54 56 66 68 87 91 95
106 109 111 118 127 127 135 145 147 149 151 168
183 189 190 200 210 220 229 230 233 238 244 259
329 403

a. Construct a stem-and-leaf display based on repeating
each stem value twice, and comment on interesting
features.

b. Determine the values of the fourths and the fourth-
spread.

¢. Construct a boxplot based on the five-number summary,
and comment on its features.

d. How large or small does an observation have to be to
qualify as an outlier? An extreme outlier? Are there any
outliers?

e. By how much could the observation 403, currently the
largest, be decreased without affecting f,?

Here is a stem-and-leaf display of the escape time data
introduced in Exercise 36 of this chapter.

32 55

33 49

34

35 6699
36 34469
37 03345
38 9

39 2347
40 23

41

42 4

. Determine the value of the fourth spread.

. Are there any outliers in the sample? Any extreme outliers?

. Construct a boxplot and comment on its features.

. By how much could the largest observation, currently
424, be decreased without affecting the value of the
fourth spread?

o 0T

The following data on distilled alcohol content (%) for a
sample of 35 port wines was extracted from the article “A
Method for the Estimation of Alcohol in Fortified Wines
Using Hydrometer Baumé and Refractometer Brix” (Amer.
J. Enol. Vitic., 2006: 486-490). Each value is an average of
two duplicate measurements.

16.35 18.85 16.20 17.75 19.58 17.73 22.75 23.78 23.25
19.08 19.62 19.20 20.05 17.85 19.17 19.48 20.00 19.97
17.48 17.15 19.07 19.90 18.68 18.82 19.03 19.45 19.37
19.20 18.00 19.60 19.33 21.22 19.50 15.30 22.25
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57.

58.

59.

Use methods from this chapter, including a boxplot that
shows outliers, to describe and summarize the data.

A sample of 20 glass bottles of a particular type was selected,
and the internal pressure strength of each bottle was deter-
mined. Consider the following partial sample information:

median = 202.2
upper fourth = 216.8

lower fourth = 196.0

125.8
221.3

188.1
230.5

193.7
250.2

Three smallest observations
Three largest observations

a. Are there any outliers in the sample? Any extreme outliers?
b. Construct a boxplot that shows outliers, and comment on
any interesting features.

A company utilizes two different machines to manufacture
parts of a certain type. During a single shift, a sample of
n = 20 parts produced by each machine is obtained, and the
value of a particular critical dimension for each part is deter-
mined. The comparative boxplot at the bottom of this page
is constructed from the resulting data. Compare and contrast
the two samples.

Blood cocaine concentration (mg/L) was determined both
for a sample of individuals who had died from cocaine-
induced excited delirium (ED) and for a sample of those who
had died from a cocaine overdose without excited delirium;
survival time for people in both groups was at most 6 hours.
The accompanying data was read from a comparative box-
plot in the article “Fatal Excited Delirium Following
Cocaine Use” (J. of Forensic Sciences, 1997: 25-31).

ED ooo0oo0.1 111 2 2 3 3
3 4 5 7 8 10 15 27 28
35 40 89 92 117 210

Non-ED O O 0 OO 1 1 1 1 2 2 2

3 3 3 4 5 5 6 8 9 10
12 14 15 17 20 32 35 41
43 48 50 56 59 60 64 79
83 87 91 96 99 110 115
122 127 140 166 178

Comparative boxplot for Exercise 58

Machine

T Dimension
115

60.

61.
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a. Determine the medians, fourths, and fourth spreads for
the two samples.

b. Are there any outliers in either sample? Any extreme
outliers?

c. Construct a comparative boxplot, and use it as a basis
for comparing and contrasting the ED and non-ED
samples.

Observations on burst strength (Ib/in?) were obtained both
for test nozzle closure welds and for production cannister
nozzle welds (“Proper Procedures Are the Key to Welding
Radioactive Waste Cannisters,” Welding J., Aug. 1997:
61-67).

Test 7200 6100 7300 7300 8000 7400
7300 7300 8000 6700 8300

Cannister 5250 5625 5900 5900 5700 6050
5800 6000 5875 6100 5850 6600

Construct a comparative boxplot and comment on inter-
esting features (the cited article did not include such a
picture, but the authors commented that they had looked
at one).

The accompanying comparative boxplot of gasoline vapor
coefficients for vehicles in Detroit appeared in the article
“Receptor Modeling Approach to VOC Emission Inventory
Validation” (J. of Envir. Engr., 1995: 483-490). Discuss any
interesting features.

Comparative boxplot for Exercise 61

Gas vapor coefficient
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SUPPLEMENTARY EXERCISES (62-83)

62. Consider the following information on ultimate tensile
strength (Ib/in) for a sample of n = 4 hard zirconium cop-
per wire specimens (from “Characterization Methods for
Fine Copper Wire,” Wire J. Intl., Aug., 1997: 74-80):

X = 76,831 s = 180 smallest x;, = 76,683
largest x; = 77,048

Determine the values of the two middle sample observations
(and don’t do it by successive guessing!).

63. A sample of 77 individuals working at a particular office
was selected and the noise level (dBA) experienced by each
individual was determined, yielding the following data
(“Acceptable Noise Levels for Construction Site Offices,”
Building Serv. Engr. Research and Technology, 2009:
87-94).

55.3 55.3 55.3 55.9 55.9 55.9 55.9 56.1 56.1 56.1 56.1
56.1 56.1 56.8 56.8 57.0 57.0 57.0 57.8 57.8 57.8 57.9
57.9 57.9 58.8 58.8 58.8 59.8 59.8 59.8 62.2 62.2 63.8
63.8 63.8 63.9 63.9 63.9 64.7 64.7 64.7 65.1 65.1 65.1
65.3 65.3 65.3 65.3 67.4 67.4 67.4 67.4 68.7 68.7 68.7
68.7 69.0 70.4 70.4 71.2 71.2 71.2 73.0 73.0 73.1 73.1
74.6 74.6 74.6 74.6 79.3 79.3 79.3 79.3 83.0 83.0 83.0

Use various techniques discussed in this chapter to organ-
ize, summarize, and describe the data.

64. Fretting is a wear process that results from tangential oscil-
latory movements of small amplitude in machine parts. The
article “Grease Effect on Fretting Wear of Mild Steel”
(Industrial Lubrication and Tribology, 2008: 67-78)
included the following data on volume wear (10~*mm?) for
base oils having four different viscosities.

Viscosity Wear
20.4 58.8 308 273 29.9 17.7 765
30.2 44.5 47.1 48.7 41.6 328 183
89.4 733 571  66.0 938 1332 811
252.6 30.6 24.2 16.6 38.9 28.7 236

a. The sample coefficient of variation 100s/X assesses the
extent of variability relative to the mean (specifically, the
standard deviation as a percentage of the mean).
Calculate the coefficient of variation for the sample at
each viscosity. Then compare the results and comment.

b. Construct a comparative boxplot of the data and com-
ment on interesting features.

65. The accompanying frequency distribution of fracture strength
(MPa) observations for ceramic bars fired in a particular kiln
appeared in the article “Evaluating Tunnel Kiln Performance”
(Amer. Ceramic Soc. Bull., Aug. 1997: 59-63).

Class 81—<83 83—<85 85—<87 87—<89 89—<91
Frequency 6 7 17 30 43
Class 91-<93 93—-<95 95—<97 97—-<99
Frequency 28 22 13 3

a. Construct a histogram based on relative frequencies, and
comment on any interesting features.

b. What proportion of the strength observations are at least
85? Less than 95?

c. Roughly what proportion of the observations are less
than 90?

66. A deficiency of the trace element selenium in the diet can
negatively impact growth, immunity, muscle and neuromus-
cular function, and fertility. The introduction of selenium
supplements to dairy cows is justified when pastures have
low selenium levels. Authors of the paper “Effects of Short-
Term Supplementation with Selenised Yeast on Milk
Production and Composition of Lactating Cows”
(Australian J. of Dairy Tech., 2004: 199-203) supplied the
following data on milk selenium concentration (mg/L) for a
sample of cows given a selenium supplement and a control
sample given no supplement, both initially and after a 9-day
period.

Obs Init Se Init Cont Final Se Final Cont

1 114 9.1 138.3 9.3

2 9.6 8.7 104.0 8.8

3 10.1 9.7 96.4 8.8

4 85 10.8 89.0 10.1

5 10.3 10.9 88.0 9.6

6 10.6 10.6 103.8 8.6

7 11.8 10.1 147.3 10.4

8 9.8 12.3 97.1 12.4

9 10.9 8.8 172.6 9.3
10 10.3 10.4 146.3 9.5
11 10.2 10.9 99.0 8.4
12 114 104 122.3 8.7
13 9.2 11.6 103.0 125
14 10.6 10.9 117.8 9.1
15 10.8 121.5

16 8.2 93.0

a. Do the initial Se concentrations for the supplement and

control samples appear to be similar? Use various tech-
niques from this chapter to summarize the data and
answer the question posed.

b. Again use methods from this chapter to summarize the
data and then describe how the final Se concentration
values in the treatment group differ from those in the
control group.

67. Aortic stenosis refers to a narrowing of the aortic valve in
the heart. The paper “Correlation Analysis of Stenotic
Aortic Valve Flow Patterns Using Phase Contrast MRI”
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(Annals of Biomed. Engr., 2005: 878-887) gave the follow-
ing data on aortic root diameter (cm) and gender for a sam-
ple of patients having various degrees of aortic stenosis:

M: 3.7 3.4 3.7 40 39 3.8 34 36 3.1 4.0 34 3.8 35
F: 382632 30433531313230

a. Compare and contrast the diameter observations for the
two genders.

b. Calculate a 10% trimmed mean for each of the two sam-
ples, and compare to other measures of center (for the
male sample, the interpolation method mentioned in
Section 1.3 must be used).

a. For what value of c is the quantity X(x; — c)? mini-
mized? [Hint: Take the derivative with respect to c, set
equal to 0, and solve.]

b. Using the result of part (a), which of the two quantities
>(x — x)? and 3 (% — w)? will be smaller than the
other (assuming that X # w)?

a. Let a and b be constants and let y; = ax; + b for
i=1,2,...,n What are the relationships between X
and y and between sZ and s2?

b. A sample of temperatures for initiating a certain chemi-
cal reaction yielded a sample average (°C) of 87.3 and a
sample standard deviation of 1.04. What are the sample
average and standard deviation measured in °F? [Hint:

F = 2C+32]

Elevated energy consumption during exercise continues
after the workout ends. Because calories burned after exer-
cise contribute to weight loss and have other consequences,
it is important to understand this process. The paper “Effect
of Weight Training Exercise and Treadmill Exercise on
Post-Exercise Oxygen Consumption” (Medicine and
Science in Sports and Exercise, 1998: 518-522) reported
the accompanying data from a study in which oxygen con-
sumption (liters) was measured continuously for 30 minutes
for each of 15 subjects both after a weight training exercise
and after a treadmill exercise.

Subject 1 2 3 4 5 6 7
Weight (x)  14.6 14.4 195 24.3 16.3 22.1 23.0
Treadmill (y) 11.3 5.3 9.1 15.2 10.1 19.6 20.8

Subject 8 9 10 11 12 13 14 15
Weight (x)  18.7 19.0 17.0 19.1 19.6 23.2 185 15.9
Treadmill (y) 10.3 10.3 2.6 16.6 22.4 23.6 126 44

a. Construct a comparative boxplot of the weight and tread-
mill observations, and comment on what you see.

b. Because the data is in the form of (x, y) pairs, with x and
y measurements on the same variable under two different
conditions, it is natural to focus on the differences within
pairs: d; = X; — V4, ...,d, =X, —y, Construct a
boxplot of the sample differences. What does it suggest?

Here is a description from Minitab of the strength data given
in Exercise 13.

Supplementary Exercises 47

Vari abl e N Mean Median TrMean StDev SE Mean

strength 153 135.39 135.40 135.41 4.59 0.37
Vari abl e M ni num Maxi mum QA @3
strength 122. 20 147.70 132. 95 138. 25

a. Comment on any interesting features (the quartiles and
fourths are virtually identical here).

b. Construct a boxplot of the data based on the quartiles,
and comment on what you see.

72. Anxiety disorders and symptoms can often be effectively
treated with benzodiazepine medications. It is known that
animals exposed to stress exhibit a decrease in benzodi-
azepine receptor binding in the frontal cortex. The paper
“Decreased Benzodiazepine Receptor Binding in Prefrontal
Cortex in Combat-Related Posttraumatic Stress Disorder”
(Amer. J. of Psychiatry, 2000: 1120-1126) described the
first study of benzodiazepine receptor binding in individuals
suffering from PTSD. The accompanying data on a receptor
binding measure (adjusted distribution volume) was read
from a graph in the paper.

PTSD: 10, 20, 25, 28, 31, 35, 37, 38, 38, 39, 39,
42, 46
Healthy: 23, 39, 40, 41, 43, 47, 51, 58, 63, 66, 67,
69, 72

Use various methods from this chapter to describe and sum-
marize the data.

73. The article “Can We Really Walk Straight?” (Amer. J. of
Physical Anthropology, 1992: 19-27) reported on an exper-
iment in which each of 20 healthy men was asked to walk
as straight as possible to a target 60 m away at normal
speed. Consider the following observations on cadence
(number of strides per second):

95 85 .92 95 93 .86 1.00 .92 .85 .81
.78 93 .93 105 .93 106 1.06 .96 .81 .96

Use the methods developed in this chapter to summarize the
data; include an interpretation or discussion wherever
appropriate. [Note: The author of the article used a rather
sophisticated statistical analysis to conclude that people
cannot walk in a straight line and suggested several expla-
nations for this.]

74. The mode of a numerical data set is the value that occurs
most frequently in the set.
a. Determine the mode for the cadence data given in
Exercise 73.
b. For a categorical sample, how would you define the
modal category?

75. Specimens of three different types of rope wire were
selected, and the fatigue limit (MPa) was determined for
each specimen, resulting in the accompanying data.

Type 1 350
371

Type 2 350
373

350
372

354
374

350
372

359
376

358
384

363
380

370
391

365
383

370
391

368
388

370
392

369
392

371

371
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76.

77.

CHAPTER 1 Overview and Descriptive Statistics

Type3 350 361 362 364 364 365 366 371
377 377 377 379 380 380 392

a. Construct a comparative boxplot, and comment on simi-
larities and differences.

b. Construct a comparative dotplot (a dotplot for each sam-
ple with a common scale). Comment on similarities and
differences.

c. Does the comparative boxplot of part (a) give an inform-
ative assessment of similarities and differences? Explain
your reasoning.

The three measures of center introduced in this chapter are the
mean, median, and trimmed mean. Two additional measures
of center that are occasionally used are the midrange, which is
the average of the smallest and largest observations, and the
midfourth, which is the average of the two fourths.Which of
these five measures of center are resistant to the effects of out-
liers and which are not? Explain your reasoning.

The authors of the article “Predictive Model for Pitting

Corrosion in Buried Oil and Gas Pipelines” (Corrosion,

2009: 332-342) provided the data on which their investiga-

tion was based.

a. Consider the following sample of 61 observations on
maximum pitting depth (mm) of pipeline specimens
buried in clay loam soil.

c. The accompanying comparative boxplot from Minitab
shows plots of pitting depth for four different types of
soils. Describe its important features.

78. Consider a sample x;, X,, . . ., X, and suppose that the values
of X, s2, and s have been calculated.
a. Lety,=x — Xfori=1,...,n. How do the values of
s? and s for the y;’s compare to the corresponding values
for the x;’s? Explain.

b. Letz; = (x; — X)/sfori = 1, ..., n.What are the values
of the sample variance and sample standard deviation for
the z;s?

79. Let X, and sZ denote the sample mean and variance for the
sample x,, .. ., X, and let X, and s2_, denote these quanti-
ties when an additional observation x,., is added to the
sample.

a. Show how X, ,, can be computed from X, and X, ;.

b. Show that
S2is = (0= D83+~ gy — X
so that s2, ; can be computed from x, ., X,,, and s2.

c. Suppose that a sample of 15 strands of drapery yarn has
resulted in a sample mean thread elongation of 12.58 mm
and a sample standard deviation of .512 mm. A 16%
strand results in an elongation value of 11.8. What are
the values of the sample mean and sample standard devi-
ation for all 16 elongation observations?

041 041 041 041 043 043 043 048 048
058 0.79 0.79 0.81 081 081 091 094 094 80. Lengths of bus routes for any particular transit system will
1.02 1.04 104 117 117 117 117 117 117 typically vary from one route to another. The article
1.17 119 119 127 140 140 159 159 1.60 “Planning of City Bus Routes” (J. of the Institution of
168 191 196 196 196 210 221 231 246 Engineers, 1995: 211-215) gives the following information
249 257 274 310 3.18 330 358 358 4.15 on lengths (km) for one particular system:
475 533 7.65 7.70 8.13 10.41 13.44
Length 6—<8 8—<10 10—<12 12—-<14 14—<16
Construct a stem-and-leaf display in which the two Frequency 6 23 30 35 32
largest values are shown in a last row labeled HI. Length 16— <18 18— <20 20—<22 22— <24 24—<26
b. Refer back to (a), and create a histogram based on eight Frequency 48 42 40 28 27
classes with 0 as the lower limit of the first class and
. : Length 26—<28 28—<30 30—<35 35—<40 40—<45
class widths of .5, .5, .5, .5, 1, 2, 5, and 5, respectively. Frequency 26 1 97 1 ’
Comparative boxplot for Exercise 77
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a. Draw a histogram corresponding to these frequencies.

b. What proportion of these route lengths are less than 20?
What proportion of these routes have lengths of at least 30?

c¢. Roughly what is the value of the 90™ percentile of the
route length distribution?

d. Roughly what is the median route length?

A study carried out to investigate the distribution of total
braking time (reaction time plus accelerator-to-brake move-
ment time, in ms) during real driving conditions at 60 km/hr
gave the following summary information on the distribution
of times (“A Field Study on Braking Responses During
Driving,” Ergonomics, 1995: 1903-1910):

mean = 535 median = 500 mode = 500
sd = 96 minimum = 220 maximum = 925
5th percentile = 400 10th percentile = 430
90th percentile = 640 95th percentile = 720

What can you conclude about the shape of a histogram of
this data? Explain your reasoning.

The sample data x,, X,, . . . , X, sometimes represents a time

series, where x, = the observed value of a response variable

x at time t. Often the observed series shows a great deal of

random variation, which makes it difficult to study longer-

term behavior. In such situations, it is desirable to produce

a smoothed version of the series. One technique for doing so

involves exponential smoothing. The value of a smoothing

constant o is chosen (0 < a <1). Then with

X, = smoothed value at time t, we set X, = x;, and for

t=23...,n%=ax+ (1 — a)X_,.

a. Consider the following time series in which
X, = temperature (°F) of effluent at a sewage treatment
plant on day t: 47, 54, 53, 50, 46, 46, 47, 50, 51, 50, 46,
52, 50, 50. Plot each x, against t on a two-dimensional
coordinate system (a time-series plot). Does there appear
to be any pattern?

b. Calculate the X,’s using a = .1. Repeat using o = .5.
Which value of a gives a smoother X, series?
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c. Substitute X,_; = ax,_; + (1 — a)X,_, on the right-hand
side of the expression for X,, then substitute X,_, in terms
of x,_, and X,_5, and so on. On how many of the values
Xo Xi_1s - - -+ X, does X, depend? What happens to the
coefficient on x,_, as k increases?

d. Refer to part (c). If tis large, how sensitive is X, to the ini-
tialization X, = x,? Explain.

[Note: A relevant reference is the article “Simple Statistics
for Interpreting Environmental Data,” Water Pollution
Control Fed. J., 1981: 167-175.]

Consider numerical observations x,, . . ., X,. It is frequently

of interest to know whether the x; s are (at least approxi-

mately) symmetrically distributed about some value. If n is
at least moderately large, the extent of symmetry can be
assessed from a stem-and-leaf display or histogram.

However, if n is not very large, such pictures are not partic-

ularly informative. Consider the following alternative. Let y,

denote the smallest x;, y, the second smallest x;, and so on.

Then plot the following pairs as points on a two-dimensional

coordinate system: (Y, — X, X — V1), (Vouy — X, X — Y,),

(Yo—p — X, X —V¥3), ... There are n/2 points when n is even

and (n — 1)/2 when n is odd.

a. What does this plot look like when there is perfect sym-
metry in the data? What does it look like when observa-
tions stretch out more above the median than below it
(a long upper tail)?

b. The accompanying data on rainfall (acre-feet) from 26
seeded clouds is taken from the article “A Bayesian
Analysis of a Multiplicative Treatment Effect in Weather
Modification” (Technometrics, 1975: 161-166).
Construct the plot and comment on the extent of sym-
metry or nature of departure from symmetry.
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255.0 2747 2747 3028 3341 430.0 489.1
703.4 978.0 1656.0 1697.8 2745.6
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2 Probability

I INTRODUCTION

The term probability refers to the study of randomness and uncertainty. In any
situation in which one of a number of possible outcomes may occur, the disci-
pline of probability provides methods for quantifying the chances, or likeli-
hoods, associated with the various outcomes. The language of probability is
constantly used in an informal manner in both written and spoken contexts.
Examples include such statements as “It is likely that the Dow Jones average
will increase by the end of the year,” “There is a 50-50 chance that the incum-
bent will seek reelection,” “There will probably be at least one section of that
course offered next year,” “The odds favor a quick settlement of the strike,”
and “It is expected that at least 20,000 concert tickets will be sold.” In this
chapter, we introduce some elementary probability concepts, indicate how
probabilities can be interpreted, and show how the rules of probability can be
applied to compute the probabilities of many interesting events. The method-
ology of probability will then permit us to express in precise language such
informal statements as those given above.

The study of probability as a branch of mathematics goes back over 300
years, where it had its genesis in connection with questions involving games of
chance. Many books are devoted exclusively to probability, but our objective
here is to cover only that part of the subject that has the most direct bearing
on problems of statistical inference.
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2.1 Sample Spaces and Events 51

I 2.1 Sample Spaces and Events

An experiment is any activity or process whose outcome is subject to uncertainty.
Although the word experiment generally suggests a planned or carefully controlled
laboratory testing situation, we use it here in a much wider sense. Thus experiments
that may be of interest include tossing a coin once or several times, selecting a card
or cards from a deck, weighing a loaf of bread, ascertaining the commuting time
from home to work on a particular morning, obtaining blood types from a group of
individuals, or measuring the compressive strengths of different steel beams.

The Sample Space of an Experiment

DEFINITION The sample space of an experiment, denoted by ¢, is the set of all possible
outcomes of that experiment.

Example 2.1  The simplest experiment to which probability applies is one with two possible out-
comes. One such experiment consists of examining a single fuse to see whether it is
defective. The sample space for this experiment can be abbreviated as & = {N, D},
where N represents not defective, D represents defective, and the braces are used to
enclose the elements of a set. Another such experiment would involve tossing a
thumbtack and noting whether it landed point up or point down, with sample space
& = {U, D}, and yet another would consist of observing the gender of the next child
born at the local hospital, with & = {M, F}. |

Example 2.2 If we examine three fuses in sequence and note the result of each examination, then
an outcome for the entire experiment is any sequence of N’s and D’s of length 3, so

& = {NNN, NND, NDN, NDD, DNN, DND, DDN, DDD}

If we had tossed a thumbtack three times, the sample space would be obtained by
replacing N by U in & above, with a similar notational change yielding the sample space
for the experiment in which the genders of three newborn children are observed. M

Example 2.3  Two gas stations are located at a certain intersection. Each one has six gas pumps.
Consider the experiment in which the number of pumps in use at a particular time of
day is determined for each of the stations. An experimental outcome specifies how
many pumps are in use at the first station and how many are in use at the second one.
One possible outcome is (2, 2), another is (4, 1), and yet another is (1, 4). The 49
outcomes in & are displayed in the accompanying table. The sample space for the
experiment in which a six-sided die is thrown twice results from deleting the 0 row
and 0 column from the table, giving 36 outcomes.

Second Station

0 1 2 3 4 5 6

(0, 0) 0, 1) 0, 2) (0, 3) ©, 4) (0, 5) (0, 6)
1,0 1,1 1,2 1,3 1,4 1,5 (1,6)
(2,0) (2, 1) (2,2 (2,3) (2, 4) (2,5) (2, 6)
(3,0) (3,1) (3,2) (3,3) (3,4 (3,5) (3, 6)
(4,0) 4,1) 4,2) (4,3) (4, 4) (4,5) (4, 6)
(5,0) (5,1) (5,2) (5,3) (5, 4) (5,5) (5, 6)
(6, 0) (6,1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
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52 CHAPTER 2 Probability

Example 2.4 A reasonably large percentage of C++ programs written at a particular company
compile on the first run, but some do not (a compiler is a program that translates
source code, in this case C+ + programs, into machine language so programs can be
executed). Suppose an experiment consists of selecting and compiling C+ + pro-
grams at this location one by one until encountering a program that compiles on the
first run. Denote a program that compiles on the first run by S (for success) and one
that doesn’t do so by F (for failure). Although it may not be very likely, a possible
outcome of this experiment is that the first 5 (or 10 or 20 or . . .) are F’s and the next
one is an S. That is, for any positive integer n, we may have to examine n programs
before seeing the first S. The sample space is & = {S, FS, FFS, FFFS, ...}, which
contains an infinite number of possible outcomes. The same abbreviated form of
the sample space is appropriate for an experiment in which, starting at a specified
time, the gender of each newborn infant is recorded until the birth of a male is
observed. [ |

Events

In our study of probability, we will be interested not only in the individual outcomes
of & but also in various collections of outcomes from .

DEFINITION An event is any collection (subset) of outcomes contained in the sample space
&. An event is simple if it consists of exactly one outcome and compound if
it consists of more than one outcome.

When an experiment is performed, a particular event A is said to occur if the result-
ing experimental outcome is contained in A. In general, exactly one simple event will
occur, but many compound events will occur simultaneously.

Example 2.5 Consider an experiment in which each of three vehicles taking a particular freeway
exit turns left (L) or right (R) at the end of the exit ramp. The eight possible outcomes
that comprise the sample space are LLL, RLL, LRL, LLR, LRR, RLR, RRL, and RRR.
Thus there are eight simple events, among which are E;, = {LLL} and E; = {LRR}.
Some compound events include

A = {RLL, LRL, LLR} = the event that exactly one of the three
vehicles turns right

B = {LLL, RLL, LRL, LLR} = the event that at most one of the
vehicles turns right

C = {LLL, RRR} = the event that all three vehicles turn in the
same direction

Suppose that when the experiment is performed, the outcome is LLL. Then the sim-
ple event E, has occurred and so also have the events B and C (but not A). |

Example 2.6 When the number of pumps in use at each of two six-pump gas stations is observed,
(Example 2.3 there are 49 possible outcomes, so there are 49 simple events:
continued) E, = {(0,0}E, = {0 1)} ...,Eym = {(6, 6)}. Examples of compound events are
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A ={(0,0),(1,1),(22),(3,3), (4 4),(5,5), (6,6)} = the event that
the number of pumps in use is the same for both stations
B = {(0,4), (1,3), (2,2),(3,1), (4,0)} = the event that
the total number of pumps in use is four
C = {(0,0), (0, 1), (1, 0), (1, 1)} = the event that
at most one pump is in use at each station [ |

Example 2.7  The sample space for the program compilation experiment contains an infinite num-
(Example 2.4 ber of outcomes, so there are an infinite number of simple events. Compound events
continued) include

A = {S, FS, FFS} = the event that at most three programs are examined

E = {FS, FFFS, FFFFFS, ...} = the event that an even number of
programs are examined |

Some Relations from Set Theory

An event is just a set, so relationships and results from elementary set theory can be
used to study events. The following operations will be used to create new events
from given events.

DEFINITION 1. The complement of an event A, denoted by A’, is the set of all outcomes in
& that are not contained in A.

2. The union of two events A and B, denoted by A U B and read “A or B,” is
the event consisting of all outcomes that are either in A or in B or in both
events (so that the union includes outcomes for which both A and B occur
as well as outcomes for which exactly one occurs)—that is, all outcomes in
at least one of the events.

3. The intersection of two events A and B, denoted by A M B and read “A and
B,” is the event consisting of all outcomes that are in both A and B.

Example 2.8  For the experiment in which the number of pumps in use at a single six-pump gas
(Example 2.3 station is observed, let A = {0,1,2,3,4}, B ={3,4,5,6}, and C = {1, 3,5}

continued) Then
A= {56}, AUB={0123456}=¢ AUC=1{01234,5}
ANB={3,4}, ANC=1{13}, (ANC) ={0,24,5,6} u

Example 2.9 In the program compilation experiment, define A, B, and C by

(Example 2.4 _ _ B
continued) A = {S,FS,FFS}, B = {S,FFS, FFFFS}, C = {FS, FFFS, FFFFFS, ...}

Then

A" = {FFFS, FFFFS, FFFFFS,...}, C' = {S,FFS, FFFFS, ...}
AUB = {S,FS, FFS, FFFFS}, ANB = {S, FFS} u
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Sometimes A and B have no outcomes in common, so that the intersection of
A and B contains no outcomes.

DEFINITION Let & denote the null event (the event consisting of no outcomes whatsoever).
When AN B = &, A and B are said to be mutually exclusive or disjoint
events.

Example 2.10 A small city has three automobile dealerships: a GM dealer selling Chevrolets and

Buicks; a Ford dealer selling Fords and Lincolns; and a Toyota dealer. If an experi-
ment consists of observing the brand of the next car sold, then the events
A = {Chevrolet, Buick} and B = {Ford, Lincoln} are mutually exclusive because
the next car sold cannot be both a GM product and a Ford product (at least until the
two companies merge!). [ |

The operations of union and intersection can be extended to more than two
events. For any three events A, B, and C, the event A U B U C is the set of outcomes
contained in at least one of the three events, whereas A M B M C is the set of out-
comes contained in all three events. Given events A;, A,, A, . . ., these events are
said to be mutually exclusive (or pairwise disjoint) if no two events have any out-
comes in common.

A pictorial representation of events and manipulations with events is obtained by
using Venn diagrams. To construct a Venn diagram, draw a rectangle whose interior will
represent the sample space . Then any event A is represented as the interior of a closed
curve (often a circle) contained in &. Figure 2.1 shows examples of Venn diagrams.

A@B A@DB @ KAO OB

AGDB

S S S S
(a) Venn diagram of (b) Shaded region (c) Shaded region (d) Shaded region (e) Mutually exclusive
eventsAand B isANB isAUB isA' events
Figure 2.1 Venn diagrams

| EXERCISES  Section 2.1 (1-10)

observing the direction for each of three successive
vehicles.

1. Four universities—1, 2, 3, and 4—are participating in a holi-
day basketball tournament. In the first round, 1 will play 2

and 3 will play 4. Then the two winners will play for the a. List all outcomes in the event A that all three vehicles go
championship, and the two losers will also play. One possi- in the same direction.
ble outcome can be denoted by 1324 (1 beats 2 and 3 beats 4 b. List all outcomes in the event B that all three vehicles take

in first-round games, and then 1 beats 3 and 2 beats 4).

a. List all outcomes in ¢.

b. Let A denote the event that 1 wins the tournament. List
outcomes in A,

c. Let B denote the event that 2 gets into the championship
game. List outcomes in B.

d. What are the outcomes in A U B and in A N B? What are
the outcomes in A’?

. Suppose that vehicles taking a particular freeway exit can

turn right (R), turn left (L), or go straight (S). Consider

different directions.

c. List all outcomes in the event C that exactly two of the
three vehicles turn right.

d. List all outcomes in the event D that exactly two vehicles
go in the same direction.

e. List outcomesin D', C U D, and C N D.

. Three components are connected to form a system as shown

in the accompanying diagram. Because the components in
the 2-3 subsystem are connected in parallel, that subsystem
will function if at least one of the two individual components
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functions. For the entire system to function, component 1
must function and so must the 2—3 subsystem.

The experiment consists of determining the condition of each

component [S (success) for a functioning component and F

(failure) for a nonfunctioning component].

a. Which outcomes are contained in the event A that exactly
two out of the three components function?

b. Which outcomes are contained in the event B that at least
two of the components function?

c. Which outcomes are contained in the event C that the
system functions?

d. List outcomesinC',AUC,ANC,BUC,andBNC.

. Each of a sample of four home mortgages is classified as

fixed rate (F) or variable rate (V).

a. What are the 16 outcomes in §?

b. Which outcomes are in the event that exactly three of the
selected mortgages are fixed rate?

c. Which outcomes are in the event that all four mortgages
are of the same type?

d. Which outcomes are in the event that at most one of the
four is a variable-rate mortgage?

e. What is the union of the events in parts (c) and (d), and
what is the intersection of these two events?

f. What are the union and intersection of the two events in
parts (b) and (c)?

. A family consisting of three persons—A, B, and C—goes to

a medical clinic that always has a doctor at each of stations 1,

2, and 3. During a certain week, each member of the family

visits the clinic once and is assigned at random to a station.

The experiment consists of recording the station number for

each member. One outcome is (1, 2, 1) for A to station 1, B

to station 2, and C to station 1.

a. List the 27 outcomes in the sample space.

b. List all outcomes in the event that all three members go to
the same station.

c. List all outcomes in the event that all members go to dif-
ferent stations.

d. List all outcomes in the event that no one goes to station 2.

. A college library has five copies of a certain text on reserve.
Two copies (1 and 2) are first printings, and the other three (3, 4,

10.
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and 5) are second printings. A student examines these books

in random order, stopping only when a second printing has

been selected. One possible outcome is 5, and another is 213.

a. List the outcomes in .

b. Let A denote the event that exactly one book must be
examined. What outcomes are in A?

c. Let B be the event that book 5 is the one selected. What
outcomes are in B?

d. Let C be the event that book 1 is not examined. What out-
comes are in C?

An academic department has just completed voting by

secret ballot for a department head. The ballot box contains

four slips with votes for candidate A and three slips with

votes for candidate B. Suppose these slips are removed from

the box one by one.

a. List all possible outcomes.

b. Suppose a running tally is kept as slips are removed.
For what outcomes does A remain ahead of B through-
out the tally?

An engineering construction firm is currently working on

power plants at three different sites. Let A; denote the event

that the plant at site i is completed by the contract date. Use

the operations of union, intersection, and complementation

to describe each of the following events in terms of A;, A,,

and Az, draw a Venn diagram, and shade the region corre-

sponding to each one.

a. At least one plant is completed by the contract date.

b. All plants are completed by the contract date.

c. Only the plant at site 1 is completed by the contract date.

d. Exactly one plant is completed by the contract date.

e. Either the plant at site 1 or both of the other two plants
are completed by the contract date.

Use Venn diagrams to verify the following two relationships
for any events A and B (these are called De Morgan’s laws):
a. (AUB)Y =A'NB
b. ANB) =A"UB’

[Hint: In each part, draw a diagram corresponding to the left
side and another corresponding to the right side.]

a. In Example 2.10, identify three events that are mutually
exclusive.

b. Suppose there is no outcome common to all three of the
events A, B, and C. Are these three events necessarily
mutually exclusive? If your answer is yes, explain why;
if your answer is no, give a counterexample using the
experiment of Example 2.10.

2.2 Axioms, Interpretations,
and Properties of Probability

Given an experiment and a sample space &, the objective of probability is to assign
to each event A a number P(A), called the probability of the event A, which will give
a precise measure of the chance that A will occur. To ensure that the probability
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assignments will be consistent with our intuitive notions of probability, all assign-
ments should satisfy the following axioms (basic properties) of probability.

AXIOM 1 For any event A, P(A) = 0.
AXIOM 2 P() = 1.
AXIOM 3 If A, A, A, ... isan infinite collection of disjoint events, then

P(AUAUA, U ) = SP(A)
i-1

You might wonder why the third axiom contains no reference to a finite
collection of disjoint events. It is because the corresponding property for a finite
collection can be derived from our three axioms. We want our axiom list to be as short
as possible and not contain any property that can be derived from others on the list.
Axiom 1 reflects the intuitive notion that the chance of A occurring should be non-
negative. The sample space is by definition the event that must occur when the exper-
iment is performed (& contains all possible outcomes), so Axiom 2 says that the
maximum possible probability of 1 is assigned to . The third axiom formalizes the
idea that if we wish the probability that at least one of a number of events will occur
and no two of the events can occur simultaneously, then the chance of at least one
occurring is the sum of the chances of the individual events.

PROPOSITION P(©@) = 0 where J is the null event (the event containing no outcomes what-
soever). This in turn implies that the property contained in Axiom 3 is valid
for a finite collection of disjoint events.

Proof First consider the infinite collection A, = &, A, = &, A; = &, .. .. Since
N = &, the events in this collection are disjoint and U A; = . The third
axiom then gives

P@) = ZP(©)

This can happen only if P(&J) = 0.
Now suppose that A, A,, . . ., A, are disjoint events, and append to these the infi-
nite collection A, = &, A, = G, A3 = O, . ... Again invoking the third axiom,

P(_klAi> = P(_G Ai> = éP(Ai) = gk‘,lP(Ai)

as desired. [ |

Example 2.11  Consider tossing a thumbtack in the air. When it comes to rest on the ground, either
its point will be up (the outcome U) or down (the outcome D). The sample space for
this event is therefore & = {U, D}. The axioms specify P(§) = 1, so the probability
assignment will be completed by determining P(U) and P(D). Since U and D are dis-
joint and their union is &, the foregoing proposition implies that

1= P() = P(U) + P(D)
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It follows that P(D) = 1 — P(U). One possible assignment of probabilities is
P(U) = .5, P(D) = .5, whereas another possible assignment is P(U) = .75,
P(D) = .25. In fact, letting p represent any fixed number between 0 and 1, P(U) = p,
P(D) = 1 — pis an assignment consistent with the axioms. |

Example 2.12  Consider testing batteries coming off an assembly line one by one until one having
a voltage within prescribed limits is found. The simple events are E; = {S},
E, = {FS}, E; = {FFS}, E, = {FFFS},.... Suppose the probability of any
particular battery being satisfactory is .99. Then it can be shown that P(E,) = .99,
P(E,) = (.01)(.99), P(E;) = (.01)?(.99), . .. is an assignment of probabilities to the
simple events that satisfies the axioms. In particular, because the E;s are disjoint and
§=E UE,UE;U ..., itmustbe the case that

1 =P() =P(E,) + PE,) + P(E;) + -~
99[1 + .01 + (.01)2 + (.01)* + -]

Here we have used the formula for the sum of a geometric series:

a

atar+ar’+ar®+--- =1_7

However, another legitimate (according to the axioms) probability assignment
of the same “geometric” type is obtained by replacing .99 by any other number p
between 0 and 1 (and .01 by 1 — p). |

Interpreting Probability

Examples 2.11 and 2.12 show that the axioms do not completely determine an
assignment of probabilities to events. The axioms serve only to rule out assignments
inconsistent with our intuitive notions of probability. In the tack-tossing experiment
of Example 2.11, two particular assignments were suggested. The appropriate or
correct assignment depends on the nature of the thumbtack and also on one’s inter-
pretation of probability. The interpretation that is most frequently used and most eas-
ily understood is based on the notion of relative frequencies.

Consider an experiment that can be repeatedly performed in an identical and
independent fashion, and let A be an event consisting of a fixed set of outcomes of
the experiment. Simple examples of such repeatable experiments include the tack-
tossing and die-tossing experiments previously discussed. If the experiment is per-
formed n times, on some of the replications the event A will occur (the outcome will
be in the set A), and on others, A will not occur. Let n(A) denote the number of repli-
cations on which A does occur. Then the ratio n(A)/n is called the relative frequency
of occurrence of the event A in the sequence of n replications.

For example, let A be the event that a package sent within the state of
California for 2" day delivery actually arrives within one day. The results from send-
ing 10 such packages (the first 10 replications) are as follows:

Package # 1 2 3 4 5 6 7 8 9 10
Did A occur? N Y Y Y N N Y Y N N
Relative frequency of A 0 5 667 75 6 5 571 625 556 5

Figure 2.2(a) shows how the relative frequency n(A)/n fluctuates rather sub-
stantially over the course of the first 50 replications. But as the number of replications
continues to increase, Figure 2.2(b) illustrates how the relative frequency stabilizes.
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Figure 2.2 Behavior of relative frequency (a) Initial fluctuation (b) Long-run stabilization

More generally, empirical evidence, based on the results of many such repeat-
able experiments, indicates that any relative frequency of this sort will stabilize as
the number of replications n increases. That is, as n gets arbitrarily large, n(A)/n
approaches a limiting value referred to as the limiting (or long-run) relative fre-
quency of the event A. The objective interpretation of probability identifies this lim-
iting relative frequency with P(A). Suppose that probabilities are assigned to events
in accordance with their limiting relative frequencies. Then a statement such as “the
probability of a package being delivered within one day of mailing is .6” means that
of a large number of mailed packages, roughly 60% will arrive within one day.
Similarly, if B is the event that an appliance of a particular type will need service
while under warranty, then P(B) = .1 is interpreted to mean that in the long run 10%
of such appliances will need warranty service. This doesn’t mean that exactly 1 out
of 10 will need service, or that exactly 10 out of 100 will need service, because 10
and 100 are not the long run.

This relative frequency interpretation of probability is said to be objective
because it rests on a property of the experiment rather than on any particular indi-
vidual concerned with the experiment. For example, two different observers of a
sequence of coin tosses should both use the same probability assignments since the
observers have nothing to do with limiting relative frequency. In practice, this inter-
pretation is not as objective as it might seem, since the limiting relative frequency of
an event will not be known. Thus we will have to assign probabilities based on our
beliefs about the limiting relative frequency of events under study. Fortunately, there
are many experiments for which there will be a consensus with respect to probabil-
ity assignments. When we speak of a fair coin, we shall mean P(H) = P(T) = .5,
and a fair die is one for which limiting relative frequencies of the six outcomes are
all %, suggesting probability assignments P({1}) = - - - = P({6}) = %.

Because the objective interpretation of probability is based on the notion of
limiting frequency, its applicability is limited to experimental situations that are
repeatable. Yet the language of probability is often used in connection with situations
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that are inherently unrepeatable. Examples include: “The chances are good for a
peace agreement”; “It is likely that our company will be awarded the contract”; and
“Because their best quarterback is injured, | expect them to score no more than 10
points against us.” In such situations we would like, as before, to assign numerical
probabilities to various outcomes and events (e.g., the probability is .9 that we will
get the contract). We must therefore adopt an alternative interpretation of these prob-
abilities. Because different observers may have different prior information and opin-
ions concerning such experimental situations, probability assignments may now
differ from individual to individual. Interpretations in such situations are thus
referred to as subjective. The book by Robert Winkler listed in the chapter references
gives a very readable survey of several subjective interpretations.

More Probability Properties

PROPOSITION For any event A, P(A) + P(A’) = 1, from which P(A) = 1 — P(A").

Proof In Axiom 3, let k = 2, A, = A, and A, = A’. Since by definition of A’,
AUA" = £while Aand A’ are disjoint, 1L = P(S) = P(AU A") = P(A) + P(A"). |

This proposition is surprisingly useful because there are many situations in
which P(A") is more easily obtained by direct methods than is P(A).

Example 2.13  Consider a system of five identical components connected in series, as illustrated in
Figure 2.3.

Figure 2.3 A system of five components connected in a series

Denote a component that fails by F and one that doesn’t fail by S (for success). Let
A be the event that the system fails. For A to occur, at least one of the individual com-
ponents must fail. Outcomes in A include SSFSS (1, 2, 4, and 5 all work, but 3 does
not), FFSSS, and so on. There are in fact 31 different outcomes in A. However, A’,
the event that the system works, consists of the single outcome SSSSS. We will see
in Section 2.5 that if 90% of all such components do not fail and different compo-
nents fail independently of one another, then P(A") = P(SSSSS) = .9° = .59. Thus
P(A) = 1 — .59 = .41; so among a large number of such systems, roughly 41%
will fail. [

In general, the foregoing proposition is useful when the event of interest can
be expressed as “at least . . . ,” since then the complement “less than . . .” may be
easier to work with (in some problems, “more than . . .” is easier to deal with than
“at most . . .”). When you are having difficulty calculating P(A) directly, think of
determining P(A").

PROPOSITION For any event A, P(A) =< 1.
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This is because 1 = P(A) + P(A’) = P(A) since P(A’) = 0.

When events A and B are mutually exclusive, P(A U B) = P(A) + P(B). For
events that are not mutually exclusive, adding P(A) and P(B) results in “double-
counting” outcomes in the intersection. The next result shows how to correct for this.

PROPOSITION For any two events A and B,
P(AUB) = P(A) + P(B) — P(AN B)

Proof Note first that A U B can be decomposed into two disjoint events, A and
B M A’; the latter is the part of B that lies outside A (see Figure 2.4). Furthermore, B
itself is the union of the two disjoint events AMNB and A'MNB, so
P(B) = P(ANB) + P(A’ N B). Thus

P(AUB) = P(A) + P(B N A")

P(A) + [P(B) — P(A N B)]
P(A) + P(B) — P(A N B)

Figure 2.4 Representing A U B as a union of disjoint events

Example 2.14 In a certain residential suburb, 60% of all households get Internet service from the
local cable company, 80% get television service from that company, and 50% get
both services from that company. If a household is randomly selected, what is the
probability that it gets at least one of these two services from the company, and what
is the probability that it gets exactly one of these services from the company?

With A = {gets Internet service} and B = {gets TV service}, the given infor-
mation implies that P(A) = .6, P(B) = .8, and P(A N B) = .5. The foregoing
proposition now yields

P(subscribes to at least one of the two services)
=P(AUB)=PA) +PB) - PANB)=6+.8—-5=.9

The event that a household subscribes only to tv service can be written as A’ N B
[(not Internet) and TV]. Now Figure 2.4 implies that

9=PAUB) =PA) + P(A’NB) = .6 + P(A’ N B)

from which P(A” N B) = .3. Similarly, P(A N B") = P(A U B) — P(B) = .1. This
is all illustrated in Figure 2.5, from which we see that

P(exactlyone) = PANB) + PA'NB)=.1+ 3= 4

P(ANB') P(A' N B)

Figure 2.5 Probabilities for Example 2.14 |

The probability of a union of more than two events can be computed analogously.
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For any three events A, B, and C,
PAUBUC) =P(A) + P(B) + P(C) — P(ANB) — P(ANC)
-PBNC)+PANBNCQC)

This can be verified by examining a Venn diagram of A U B U C, which is shown
in Figure 2.6. When P(A), P(B), and P(C) are added, certain intersections are
counted twice, so they must be subtracted out, but this results in P(A N B N C)

being subtracted once too often.
A B
c

Figure 2.6 AUBUC

Determining Probabilities Systematically

Consider a sample space that is either finite or “countably infinite” (the latter means
that outcomes can be listed in an infinite sequence, so there is a first outcome, a sec-
ond outcome, a third outcome, and so on—for example, the battery testing scenario of
Example 2.12). Let E,;, E,, E;, ... denote the corresponding simple events, each
consisting of a single outcome. A sensible strategy for probability computation is to
first determine each simple event probability, with the requirement that X P(E;) = 1.
Then the probability of any compound event A is computed by adding together the
P(E)’s for all E{’s in A:
P(A) = 2> P(E)
allE’sin A

Example 2.15 During off-peak hours a commuter train has five cars. Suppose a commuter is twice
as likely to select the middle car (#3) as to select either adjacent car (#2 or #4), and
is twice as likely to select either adjacent car as to select either end car (#1 or #5).
Let p; = P(cariisselected) = P(E). Then we have p;=2p, = 2p, and
P, = 2p; = 2ps = p,. This gives

1=23P(E)=p; +2p, +4p;, +2p;, +p, = 10p;

implyingp, = ps = .1,p, = p, = .2, p; = .4. The probability that one of the three
middle cars is selected (a compound event) is then p, + p; + p, = .8. |

Equally Likely Outcomes

In many experiments consisting of N outcomes, it is reasonable to assign equal prob-
abilities to all N simple events. These include such obvious examples as tossing a fair
coin or fair die once or twice (or any fixed number of times), or selecting one or sev-
eral cards from a well-shuffled deck of 52. With p = P(E;) for every i,

N

N

1

1=2PE)=2p=p-N sop =
i=1

i=1

That is, if there are N equally likely outcomes, the probability for each is 1/N.
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Now consider an event A, with N(A) denoting the number of outcomes con-
tained in A. Then
P = S PE)= 3~ =
E;inA EiinA
Thus when outcomes are equally likely, computing probabilities reduces to
counting: determine both the number of outcomes N(A) in A and the number of out-
comes N in &, and form their ratio.
Example 2.16  You have six unread mysteries on your bookshelf and six unread science fiction
books. The first three of each type are hardcover, and the last three are paperback.
Consider randomly selecting one of the six mysteries and then randomly selecting
one of the six science fiction books to take on a post-finals vacation to Acapulco (after
all, you need something to read on the beach). Number the mysteries 1, 2, . . ., 6, and
do the same for the science fiction books. Then each outcome is a pair of numbers
such as (4, 1), and there are N = 36 possible outcomes (For a visual of this situation,
refer to the table in Example 2.3 and delete the first row and column). With random
selection as described, the 36 outcomes are equally likely. Nine of these outcomes are
such that both selected books are paperbacks (those in the lower right-hand corner of

the referenced table): (4,4), (4,5), . . ., (6,6). So the probability of the event A that
both selected books are paperbacks is
N(A) 9
PA)=——=—=2 [ |
®) N 36 >

| EXERCISES  Section 2.2 (11-28)

11. A mutual fund company offers its customers a variety of a. Compute the probability that the selected individual has

12.

funds: a money-market fund, three different bond funds
(short, intermediate, and long-term), two stock funds (mod-
erate and high-risk), and a balanced fund. Among customers
who own shares in just one fund, the percentages of cus-
tomers in the different funds are as follows:

at least one of the two types of cards (i.e., the probabil-
ity of the event A U B).

b. What is the probability that the selected individual has
neither type of card?

c. Describe, in terms of A and B, the event that the selected
student has a Visa card but not a MasterCard, and then

Money-market ~ 20%  High-risk stock ~ 18% calculate the probability of this event.
Short bond 15% Moderate-risk L .
stock 2504 13. A computer consulting firm presently has bids out on three
Intermediate Balanced 7% projects. Let A, = {awarded project i}, for i = 1, 2, 3, and
bond 10% suppose that P(A,) = .22, P(A,) = .25, P(A;) = .28,
Long bond 5% P(A, N A) = .11, P(A, NA) = .05, P(A,NAy) = .07,
P(A; M A, M A;) = .01. Express in words each of the fol-
A customer who owns shares in just one fund is randomly lowing events, and compute the probability of each event:
selected. a. A UA,
a. What is the probability that the selected individual owns b. A N A, [Hint: (A, UA) = Al N A}
shares in the balanced fund? c. AAUAUA, d. AfNA, N A,
b. What is the probability that the individual owns shares in e. ALNA,NA; f. (ALNAY) UA,
a bond fund? 14. Suppose that 55% of all adults regularly consume coffee,

c. What is the probability that the selected individual does
not own shares in a stock fund?

Consider randomly selecting a student at a certain univer-
sity, and let A denote the event that the selected individual
has a Visa credit card and B be the analogous event for a
MasterCard. Suppose that P(A) = .5, P(B) = .4, and
P(A N B) = .25.

45% regularly consume carbonated soda, and 70% regularly

consume at least one of these two products.

a. What is the probability that a randomly selected adult
regularly consumes both coffee and soda?

b. What is the probability that a randomly selected adult
doesn’t regularly consume at least one of these two
products?
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16.

17.

18.

19.

20.

Consider the type of clothes dryer (gas or electric) pur-
chased by each of five different customers at a certain
store.

a. If the probability that at most one of these purchases an
electric dryer is .428, what is the probability that at least
two purchase an electric dryer?

b. If P(all five purchase gas) = .116 and P(all five purchase
electric) = .005, what is the probability that at least one
of each type is purchased?

An individual is presented with three different glasses of

cola, labeled C, D, and P. He is asked to taste all three and

then list them in order of preference. Suppose the same cola

has actually been put into all three glasses.

a. What are the simple events in this ranking experiment,
and what probability would you assign to each one?

b. What is the probability that C is ranked first?

¢. What is the probability that C is ranked first and D is
ranked last?

Let A denote the event that the next request for assis-
tance from a statistical software consultant relates to the
SPSS package, and let B be the event that the next
request is for help with SAS. Suppose that P(A) = .30
and P(B) = .50.

a. Why is it not the case that P(A) + P(B) = 1?

b. Calculate P(A").

c. Calculate P(A U B).

d. Calculate P(A’ N B’).

A box contains six 40-W bulbs, five 60-W bulbs, and four
75-W bulbs. If bulbs are selected one by one in random
order, what is the probability that at least two bulbs must be
selected to obtain one that is rated 75 W?

Human visual inspection of solder joints on printed circuit
boards can be very subjective. Part of the problem stems
from the numerous types of solder defects (e.g., pad non-
wetting, knee visibility, voids) and even the degree to
which a joint possesses one or more of these defects.
Consequently, even highly trained inspectors can disagree
on the disposition of a particular joint. In one batch of
10,000 joints, inspector A found 724 that were judged
defective, inspector B found 751 such joints, and 1159 of
the joints were judged defective by at least one of the
inspectors. Suppose that one of the 10,000 joints is ran-
domly selected.
a. What is the probability that the selected joint was judged
to be defective by neither of the two inspectors?
b. What is the probability that the selected joint was
judged to be defective by inspector B but not by
inspector A?

A certain factory operates three different shifts. Over the
last year, 200 accidents have occurred at the factory.
Some of these can be attributed at least in part to unsafe
working conditions, whereas the others are unrelated
to working conditions. The accompanying table gives the
percentage of accidents falling in each type of accident—
shift category.

21.

22.
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Unsafe Unrelated
Conditions to Conditions
Day 10% 35%
Shift Swing 8% 20%
Night 5% 22%

Suppose one of the 200 accident reports is randomly

selected from a file of reports, and the shift and type of acci-

dent are determined.

a. What are the simple events?

b. What is the probability that the selected accident was
attributed to unsafe conditions?

¢. What is the probability that the selected accident did not
occur on the day shift?

An insurance company offers four different deductible
levels—none, low, medium, and high—for its homeowner’s
policyholders and three different levels—Ilow, medium, and
high—for its automobile policyholders. The accompanying
table gives proportions for the various categories of policy-
holders who have both types of insurance. For example, the
proportion of individuals with both low homeowner’s
deductible and low auto deductible is .06 (6% of all such
individuals).

Homeowner’s

Auto N L M H
L .04 .06 .05 .03
M .07 .10 .20 10
H .02 .03 .15 15

Suppose an individual having both types of policies is ran-

domly selected.

a. What is the probability that the individual has a medium
auto deductible and a high homeowner’s deductible?

b. What is the probability that the individual has a low auto
deductible? A low homeowner’s deductible?

c. What is the probability that the individual is in the same
category for both auto and homeowner’s deductibles?

d. Based on your answer in part (c), what is the probability
that the two categories are different?

e. What is the probability that the individual has at least one
low deductible level?

f. Using the answer in part (e), what is the probability that
neither deductible level is low?

The route used by a certain motorist in commuting to work
contains two intersections with traffic signals. The probabil-
ity that he must stop at the first signal is .4, the analogous
probability for the second signal is .5, and the probability
that he must stop at at least one of the two signals is .6. What
is the probability that he must stop

a. At both signals?

b. At the first signal but not at the second one?

c. At exactly one signal?
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23.

24.

25.
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The computers of six faculty members in a certain depart-

ment are to be replaced. Two of the faculty members have

selected laptop machines and the other four have chosen

desktop machines. Suppose that only two of the setups can

be done on a particular day, and the two computers to be set

up are randomly selected from the six (implying 15 equally

likely outcomes; if the computers are numbered 1, 2, . . ., 6,

then one outcome consists of computers 1 and 2, another

consists of computers 1 and 3, and so on).

a. What is the probability that both selected setups are for
laptop computers?

b. What is the probability that both selected setups are
desktop machines?

¢. What is the probability that at least one selected setup is
for a desktop computer?

d. What is the probability that at least one computer of each
type is chosen for setup?

Show that if one event A is contained in another event B
(i.e., Ais a subset of B), then P(A) = P(B). [Hint: For such
Aand B, Aand B N A’ are disjointand B = AU (B N A),
as can be seen from a Venn diagram.] For general A and B,
what does this imply about the relationship among
P(A N B), P(A) and P(A U B)?

The three most popular options on a certain type of new car
are a built-in GPS (A), a sunroof (B), and an automatic
transmission (C). If 40% of all purchasers request A, 55%
request B, 70% request C, 63% request A or B, 77% request
A or C, 80% request B or C, and 85% request A or B or C,
determine the probabilities of the following events. [Hint:
“A or B” is the event that at least one of the two options is
requested; try drawing a Venn diagram and labeling all
regions.]
a. The next purchaser will request at least one of the three
options.
b. The next purchaser will select none of the three options.
c. The next purchaser will request only an automatic trans-
mission and not either of the other two options.
d. The next purchaser will select exactly one of these three
options.

26.

217.

28.

A certain system can experience three different types of
defects. Let A, (i = 1,2,3) denote the event that the system
has a defect of type i. Suppose that

PA) = .12 P(A) = 07 P(A) = .05
P(A,UA,) = .13 P(A,UA,) = .14
P(A,UA,) = .10 P(A,NA,NA) = .01

a. What is the probability that the system does not have a
type 1 defect?

b. What is the probability that the system has both type 1
and type 2 defects?

c. What is the probability that the system has both type 1
and type 2 defects but not a type 3 defect?

d. What is the probability that the system has at most two
of these defects?

An academic department with five faculty members—

Anderson, Box, Cox, Cramer, and Fisher—must select two

of its members to serve on a personnel review committee.

Because the work will be time-consuming, no one is anx-

ious to serve, so it is decided that the representative will be

selected by putting the names on identical pieces of paper
and then randomly selecting two.

a. What is the probability that both Anderson and Box will
be selected? [Hint: List the equally likely outcomes.]

b. What is the probability that at least one of the two mem-
bers whose name begins with C is selected?

c. If the five faculty members have taught for 3, 6, 7, 10,
and 14 years, respectively, at the university, what is the
probability that the two chosen representatives have a
total of at least 15 years’ teaching experience there?

In Exercise 5, suppose that any incoming individual is
equally likely to be assigned to any of the three stations irre-
spective of where other individuals have been assigned.
What is the probability that

a. All three family members are assigned to the same station?
b. At most two family members are assigned to the same

station?
¢. Every family member is assigned to a different station?

I 2.3 Counting Techniques

When the various outcomes of an experiment are equally likely (the same probabil-

ity is assigned to each simple event), the task of computing probabilities reduces to

counting. Letting N denote the number of outcomes in a sample space and N(A) rep-

resent the number of outcomes contained in an event A,
N(A)

PA) = ~

N (2.1)

If a list of the outcomes is easily obtained and N is small, then N and N(A) can be
determined without the benefit of any general counting principles.

There are, however, many experiments for which the effort involved in
constructing such a list is prohibitive because N is quite large. By exploiting some
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general counting rules, it is possible to compute probabilities of the form (2.1) with-
out a listing of outcomes. These rules are also useful in many problems involving
outcomes that are not equally likely. Several of the rules developed here will be used
in studying probability distributions in the next chapter.

The Product Rule for Ordered Pairs

Our first counting rule applies to any situation in which a set (event) consists of
ordered pairs of objects and we wish to count the number of such pairs. By an
ordered pair, we mean that, if O, and O, are objects, then the pair (O,, O,) is differ-
ent from the pair (O,, O,). For example, if an individual selects one airline for a trip
from Los Angeles to Chicago and (after transacting business in Chicago) a second
one for continuing on to New York, one possibility is (American, United), another is
(United, American), and still another is (United, United).

PROPOSITION If the first element or object of an ordered pair can be selected in n, ways, and
for each of these n, ways the second element of the pair can be selected in n,
ways, then the number of pairs is n;n,.

An alternative interpretation involves carrying out an operation that consists of two
stages. If the first stage can be performed in any one of n, ways, and for each such
way there are n, ways to perform the second stage, then n;n, is the number of ways
of carrying out the two stages in sequence.

Example 2.17 A homeowner doing some remodeling requires the services of both a plumbing
contractor and an electrical contractor. If there are 12 plumbing contractors and
9 electrical contractors available in the area, in how many ways can the contrac-

tors be chosen? If we denote the plumbers by P, . . ., P,, and the electricians by
Qs - - -, Qq, then we wish the number of pairs of the form (P;, Q). With n, = 12
and n, = 9, the product rule yields N = (12)(9) = 108 possible ways of choosing
the two types of contractors. |

In Example 2.17, the choice of the second element of the pair did not depend
on which first element was chosen or occurred. As long as there is the same number
of choices of the second element for each first element, the product rule is valid even
when the set of possible second elements depends on the first element.

Example 2.18 A family has just moved to a new city and requires the services of both an obstetri-
cian and a pediatrician. There are two easily accessible medical clinics, each having
two obstetricians and three pediatricians. The family will obtain maximum health
insurance benefits by joining a clinic and selecting both doctors from that clinic. In
how many ways can this be done? Denote the obstetricians by O,, O,, O;, and O,
and the pediatricians by Py, . . ., Ps. Then we wish the number of pairs (O;, P;) for
which O; and P; are associated with the same clinic. Because there are four obstetri-
cians, n, = 4, and for each there are three choices of pediatrician, so n, = 3.
Applying the product rule gives N = n;n, = 12 possible choices. |

In many counting and probability problems, a configuration called a tree diagram can
be used to represent pictorially all the possibilities. The tree diagram associated with
Example 2.18 appears in Figure 2.7. Starting from a point on the left side of the
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diagram, for each possible first element of a pair a straight-line segment emanates
rightward. Each of these lines is referred to as a first-generation branch. Now for any
given first-generation branch we construct another line segment emanating from the tip
of the branch for each possible choice of a second element of the pair. Each such line
segment is a second-generation branch. Because there are four obstetricians, there are
four first-generation branches, and three pediatricians for each obstetrician yields three
second-generation branches emanating from each first-generation branch.

Figure 2.7 Tree diagram for Example 2.18

Generalizing, suppose there are n, first-generation branches, and for each first-
generation branch there are n, second-generation branches. The total number of
second-generation branches is then n,n,. Since the end of each second-generation
branch corresponds to exactly one possible pair (choosing a first element and then a
second puts us at the end of exactly one second-generation branch), there are n,n,
pairs, verifying the product rule.

The construction of a tree diagram does not depend on having the same num-
ber of second-generation branches emanating from each first-generation branch. If
the second clinic had four pediatricians, then there would be only three branches
emanating from two of the first-generation branches and four emanating from each
of the other two first-generation branches. A tree diagram can thus be used to repre-
sent pictorially experiments other than those to which the product rule applies.

A More General Product Rule

If a six-sided die is tossed five times in succession rather than just twice, then each pos-
sible outcome is an ordered collection of five numbers such as (1, 3, 1, 2, 4) or (6, 5,
2, 2, 2). We will call an ordered collection of k objects a k-tuple (so a pair is a 2-tuple
and a triple is a 3-tuple). Each outcome of the die-tossing experiment is then a 5-tuple.

Product Rule for k-Tuples

Suppose a set consists of ordered collections of k elements (k-tuples) and that
there are n, possible choices for the first element; for each choice of the first

element, there are n, possible choices of the second element; . . . ; for each
possible choice of the first k — 1 elements, there are n, choices of the kth
element. Then there are n;n, - - - - - n, possible k-tuples.
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An alternative interpretation involves carrying out an operation in k stages. If
the first stage can be performed in any one of n, ways, and for each such way there
are n, ways to perform the second stage, and for each way of performing the first
two stages there are n, ways to perform the 3" stage, and so on, then njn, - - - - - n,
is the number of ways to carry out the entire k-stage operation in sequence. This
more general rule can also be visualized with a tree diagram. For the case k = 3,
simply add an appropriate number of 3 generation branches to the tip of each 2"
generation branch. If, for example, a college town has four pizza places, a theater
complex with six screens, and three places to go dancing, then there would be four
1%t generation branches, six 2" generation branches emanating from the tip of each
1%t generation branch, and three 3 generation branches leading off each 2" genera-
tion branch. Each possible 3-tuple corresponds to the tip of a 3" generation branch.

Example 2.19  Suppose the home remodeling job involves first purchasing several kitchen
(Example 2.17 appliances. They will all be purchased from the same dealer, and there are five
continued) dealers in the area. With the dealers denoted by D,,..., D, there are
N = nyn,n; = (5)(12)(9) = 540 3-tuples of the form (D;, P;, Q), so there are 540
ways to choose first an appliance dealer, then a plumbing contractor, and finally an
electrical contractor. |

Example 2.20 If each clinic has both three specialists in internal medicine and two general sur-
(Example 2.18 geons, there are n;n,ngn, = (4)(3)(3)(2) = 72 ways to select one doctor of each type
continued) such that all doctors practice at the same clinic. |

Permutations and Combinations

Consider a group of n distinct individuals or objects (“distinct” means that there is
some characteristic that differentiates any particular individual or object from any
other). How many ways are there to select a subset of size k from the group? For
example, if a Little League team has 15 players on its roster, how many ways are
there to select 9 players to form a starting lineup? Or if a university bookstore sells
ten different laptop computers but has room to display only three of them, in how
many ways can the three be chosen?

An answer to the general question just posed requires that we distinguish
between two cases. In some situations, such as the baseball scenario, the order of
selection is important. For example, Angela being the pitcher and Ben the catcher
gives a different lineup from the one in which Angela is catcher and Ben is pitcher.
Often, though, order is not important and one is interested only in which individuals
or objects are selected, as would be the case in the laptop display scenario.

DEFINITION An ordered subset is called a permutation. The number of permutations of
size k that can be formed from the n individuals or objects in a group will be
denoted by P, .. An unordered subset is called a combination. One way to
denote the number of combinations is C, ,, but we shall instead use notation
that is quite common in probability books: (’,1) read “n choose k”.

The number of permutations can be determined by using our earlier counting
rule for k-tuples. Suppose, for example, that a college of engineering has seven
departments, which we denote by a, b, ¢, d, e, f, and g. Each department has one rep-
resentative on the college’s student council. From these seven representatives, one is
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to be chosen chair, another is to be selected vice-chair, and a third will be secretary.
How many ways are there to select the three officers? That is, how many permuta-
tions of size 3 can be formed from the 7 representatives? To answer this question,
think of forming a triple (3-tuple) in which the first element is the chair, the second
is the vice-chair, and the third is the secretary. One such triple is (a, g, b), another is
(b, g, @), and yet another is (d, f, b). Now the chair can be selected in any of n, = 7
ways. For each way of selecting the chair, there are n, = 6 ways to select the vice-
chair, and hence 7 X 6 = 42 (chair, vice-chair) pairs. Finally, for each way of
selecting a chair and vice-chair, there are n; = 5 ways of choosing the secretary.
This gives

P37 = (7)(6)(5) = 210

as the number of permutations of size 3 that can be formed from 7 distinct individ-
uals. A tree diagram representation would show three generations of branches.

The expression for P;; can be rewritten with the aid of factorial notation.
Recall that 7! (read “7 factorial™) is compact notation for the descending prod-
uct of integers (7)(6)(5)(4)(3)(2)(1). More generally, for any positive integer m,
m=mm— 1)(m —2)---- - (2)(1) This gives 1! = 1, and we also define
0! = 1. Then

_ _meE@E) _ 7
P37, = (N)(E)(5) = @ " a
More generally,

Pen =000 = D0 =2+ (0~ (k= 2)(n — (k — 1)

Multiplying and dividing this by (n — k)! gives a compact expression for the number
of permutations.

n!
(n — K)!

PROPOSITION Py =

Example 2.21 There are ten teaching assistants available for grading papers in a calculus course at a
large university. The first exam consists of four questions, and the professor wishes to
select a different assistant to grade each question (only one assistant per question). In
how many ways can the assistants be chosen for grading? Here n = group size = 10
and k = subset size = 4. The number of permutations is

10! 10!
Piio= 75— = — = 10(9)(8)(7) = 5040
w0 = o~ e - L0OO)
That is, the professor could give 5040 different four-question exams without using
the same assignment of graders to questions, by which time all the teaching assis-
tants would hopefully have finished their degree programs! [ |

Now let’s move on to combinations (i.e., unordered subsets). Again refer to the
student council scenario, and suppose that three of the seven representatives are to
be selected to attend a statewide convention. The order of selection is not important;
all that matters is which three get selected. So we are looking for (3), the number of
combinations of size 3 that can be formed from the 7 individuals. Consider for a
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moment the combination a,c,g. These three individuals can be ordered in 3! = 6
ways to produce permutations:

a¢49 40,C C,a09 Cg,a ¢g,a,C g¢,Ca

Similarly, there are 3! = 6 ways to order the combination b,c,e to produce permuta-
tions, and in fact 3! ways to order any particular combination of size 3 to produce
permutations. This implies the following relationship between the number of com-
binations and the number of permutations:
7 7\ _ Pas 7 (7)(6)(5)
P = @-(3)=() =5 = @@~ ven

It would not be too difficult to list the 35 combinations, but there is no need to do so
if we are interested only in how many there are. Notice that the number of permuta-
tions 210 far exceeds the number of combinations; the former is larger than the latter
by a factor of 3! since that is how many ways each combination can be ordered.

Generalizing the foregoing line of reasoning gives a simple relationship
between the number of permutations and the number of combinations that yields a
concise expression for the latter quantity.

PROPOSITION (”) P o0t
K/ "k T K@ - K)!

Notice that (7) = 1 and (3) = 1 since there is only one way to choose a set of
(all) n elements or of no elements, and (7) = n since there are n subsets of size 1.

Example 2.22 A particular iPod playlist contains 100 songs, 10 of which are by the Beatles.
Suppose the shuffle feature is used to play the songs in random order (the random-
ness of the shuffling process is investigated in “Does Your iPod Really Play
Favorites?” (The Amer. Statistician, 2009: 263-268). What is the probability that the
first Beatles song heard is the fifth song played?

In order for this event to occur, it must be the case that the first four songs
played are not Beatles’ songs (NBs) and that the fifth song is by the Beatles (B). The
number of ways to select the first five songs is 100(99)(98)(97)(96). The number of
ways to select these five songs so that the first four are NBs and the next is a B is
90(89)(88)(87)(10). The random shuffle assumption implies that any particular set
of 5 songs from amongst the 100 has the same chance of being selected as the first
five played as does any other set of five songs; each outcome is equally likely.
Therefore the desired probability is the ratio of the number of outcomes for which
the event of interest occurs to the number of possible outcomes:

90-89-88-87-10 P, g (10)

P(1% B is the 5™ song played) = TR I = .0679
5,100

Here is an alternative line of reasoning involving combinations. Rather than focus-
ing on selecting just the first five songs, think of playing all 100 songs in random
order. The number of ways of choosing 10 of these songs to be the Bs (without

regard to the order in which they are then played) is (‘3 ). Now if we choose 9 of the

last 95 songs to be Bs, which can be done in (995) ways, that leaves four NBs and one
B for the first five songs. There is only one further way for these five to start with
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four NBs and then follow with a B (remember that we are considering unordered

subsets). Thus
(5)
P(1% B is the 5™ song played) = A
100
10
It is easily verified that this latter expression is in fact identical to the first expres-
sion for the desired probability, so the numerical result is again .0679.

The probability that one of the first five songs played is a Beatles’ song is
P(1t B is the 15t or 2" or 3" or 4™ or 5" song played)

99 98 97 96 95

9 9 9 9 9
= + + + + = .4162

100 100 100 100 100

10 10 10 10 10
It is thus rather likely that a Beatles’ song will be one of the first five songs played.
Such a “coincidence” is not as surprising as might first appear to be the case. [ |

Example 2.23 A university warehouse has received a shipment of 25 printers, of which 10 are laser
printers and 15 are inkjet models. If 6 of these 25 are selected at random to be
checked by a particular technician, what is the probability that exactly 3 of those
selected are laser printers (so that the other 3 are inkjets)?

Let D, = {exactly 3 of the 6 selected are inkjet printers}. Assuming that any
particular set of 6 printers is as likely to be chosen as is any other set of 6, we have
equally likely outcomes, so P(D;) = N(D,)/N, where N is the number of ways of
choosing 6 printers from the 25 and N(D,) is the number of ways of choosing 3 laser
printers and 3 inkjet models. Thus N = (%). To obtain N(D,), think of first choosing
3 of the 15 inkjet models and then 3 of the laser printers. There are (%) ways of
choosing the 3 inkjet models, and there are (5 ) ways of choosing the 3 laser printers;
N(D,) is now the product of these two numbers (visualize a tree diagram—we are
really using a product rule argument here), so

(15)(10) 15! 10!
N(D;) \3/\3/ 31121 317!
N 25 25!
6 6119!

Let D, = {exactly 4 of the 6 printers selected are inkjet models} and define Dy and

D in an analogous manner. Then the probability that at least 3 inkjet printers are
selected is

P(D,) = = 3083

P(D,UD,UD; U Dg) = P(D;) + P(D,) + P(Ds) + P(Dg)

G)IE) G)E), (N C)F)

_ + + + = 8530

5 & 6 @
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[UEXERCISES  Section 2.3 (29-44)

29.

30.

31.

32.

As of April 2006, roughly 50 million .com web domain

names were registered (e.g., yahoo.com).

a. How many domain names consisting of just two letters in
sequence can be formed? How many domain names of
length two are there if digits as well as letters are per-
mitted as characters? [Note: A character length of three
or more is now mandated.]

b. How many domain names are there consisting of three
letters in sequence? How many of this length are there if
either letters or digits are permitted? [Note: All are cur-
rently taken.]

c. Answer the questions posed in (b) for four-character
sequences.

d. As of April 2006, 97,786 of the four-character sequences
using either letters or digits had not yet been claimed. If
a four-character name is randomly selected, what is the
probability that it is already owned?

A friend of mine is giving a dinner party. His current wine
supply includes 8 bottles of zinfandel, 10 of merlot, and 12
of cabernet (he only drinks red wine), all from different
wineries.

a. If he wants to serve 3 bottles of zinfandel and serving
order is important, how many ways are there to do this?

b. I 6 bottles of wine are to be randomly selected from the
30 for serving, how many ways are there to do this?

c. If 6 bottles are randomly selected, how many ways are
there to obtain two bottles of each variety?

d. If 6 bottles are randomly selected, what is the probabil-
ity that this results in two bottles of each variety being
chosen?

e. If 6 bottles are randomly selected, what is the probability
that all of them are the same variety?

a. Beethoven wrote 9 symphonies, and Mozart wrote 27
piano concertos. If a university radio station announcer
wishes to play first a Beethoven symphony and then a
Mozart concerto, in how many ways can this be done?

b. The station manager decides that on each successive night
(7 days per week), a Beethoven symphony will be played,
followed by a Mozart piano concerto, followed by a
Schubert string quartet (of which there are 15). For roughly
how many years could this policy be continued before
exactly the same program would have to be repeated?

A stereo store is offering a special price on a complete set
of components (receiver, compact disc player, speakers,
turntable). A purchaser is offered a choice of manufacturer
for each component:

Receiver: Kenwood, Onkyo, Pioneer, Sony, Sherwood
Compact disc player: Onkyo, Pioneer, Sony, Technics
Speakers: Boston, Infinity, Polk

Turntable: Onkyo, Sony, Teac, Technics

33.

34.

35.

A switchboard display in the store allows a customer to

hook together any selection of components (consisting of

one of each type). Use the product rules to answer the
following questions:

a. In how many ways can one component of each type be
selected?

b. In how many ways can components be selected if both
the receiver and the compact disc player are to be Sony?

c¢. In how many ways can components be selected if none is
to be Sony?

d. In how many ways can a selection be made if at least one
Sony component is to be included?

e. If someone flips switches on the selection in a com-
pletely random fashion, what is the probability that the
system selected contains at least one Sony component?
Exactly one Sony component?

Again consider a Little League team that has 15 players on

its roster.

a. How many ways are there to select 9 players for the
starting lineup?

b. How many ways are there to select 9 players for the
starting lineup and a batting order for the 9 starters?

c. Suppose 5 of the 15 players are left-handed. How many
ways are there to select 3 left-handed outfielders and have
all 6 other positions occupied by right-handed players?

Computer keyboard failures can be attributed to electrical

defects or mechanical defects. A repair facility currently has

25 failed keyboards, 6 of which have electrical defects and

19 of which have mechanical defects.

a. How many ways are there to randomly select 5 of these key-
boards for a thorough inspection (without regard to order)?

b. In how many ways can a sample of 5 keyboards be
selected so that exactly two have an electrical defect?

c. If a sample of 5 keyboards is randomly selected, what is
the probability that at least 4 of these will have a
mechanical defect?

A production facility employs 20 workers on the day shift,

15 workers on the swing shift, and 10 workers on the grave-

yard shift. A quality control consultant is to select 6 of these

workers for in-depth interviews. Suppose the selection is

made in such a way that any particular group of 6 workers

has the same chance of being selected as does any other

group (drawing 6 slips without replacement from among 45).

a. How many selections result in all 6 workers coming from
the day shift? What is the probability that all 6 selected
workers will be from the day shift?

b. What is the probability that all 6 selected workers will be
from the same shift?

c. What is the probability that at least two different shifts
will be represented among the selected workers?

d. What is the probability that at least one of the shifts will
be unrepresented in the sample of workers?
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36.

37.

38.

39.

40.

CHAPTER 2 Probability

An academic department with five faculty members nar-
rowed its choice for department head to either candidate A
or candidate B. Each member then voted on a slip of paper
for one of the candidates. Suppose there are actually three
votes for A and two for B. If the slips are selected for tally-
ing in random order, what is the probability that A remains
ahead of B throughout the vote count (e.g., this event occurs
if the selected ordering is AABAB, but not for ABBAA)?

An experimenter is studying the effects of temperature, pres-

sure, and type of catalyst on yield from a certain chemical

reaction. Three different temperatures, four different pres-
sures, and five different catalysts are under consideration.

a. If any particular experimental run involves the use of a
single temperature, pressure, and catalyst, how many
experimental runs are possible?

b. How many experimental runs are there that involve use
of the lowest temperature and two lowest pressures?

c. Suppose that five different experimental runs are to be
made on the first day of experimentation. If the five are
randomly selected from among all the possibilities, so
that any group of five has the same probability of selec-
tion, what is the probability that a different catalyst is
used on each run?

A box in a certain supply room contains four 40-W light-

bulbs, five 60-W bulbs, and six 75-W bulbs. Suppose that

three bulbs are randomly selected.

a. What is the probability that exactly two of the selected
bulbs are rated 75-W?

b. What is the probability that all three of the selected bulbs
have the same rating?

c. What is the probability that one bulb of each type is
selected?

d. Suppose now that bulbs are to be selected one by one
until a 75-W bulb is found. What is the probability that it
is necessary to examine at least six bulbs?

Fifteen telephones have just been received at an authorized
service center. Five of these telephones are cellular, five
are cordless, and the other five are corded phones. Suppose
that these components are randomly allocated the numbers

1, 2, ..., 15 to establish the order in which they will be

serviced.

a. What is the probability that all the cordless phones are
among the first ten to be serviced?

b. What is the probability that after servicing ten of these
phones, phones of only two of the three types remain to
be serviced?

c. What is the probability that two phones of each type are
among the first six serviced?

Three molecules of type A, three of type B, three of type C,

and three of type D are to be linked together to form a chain

molecule. One such chain molecule is ABCDABCDABCD,

and another is BCDDAAABDBCC.

a. How many such chain molecules are there? [Hint: If the
three A’s were distinguishable from one another—A,, A,,
A;—and the B’s, C’s, and D’s were also, how many

41.

42.

43.

44,

molecules would there be? How is this number reduced
when the subscripts are removed from the A’s?]

b. Suppose a chain molecule of the type described is ran-
domly selected. What is the probability that all three
molecules of each type end up next to one another (such
as in BBBAAADDDCCC)?

An ATM personal identification number (PIN) consists of

four digits, each a 0, 1, 2, ... 8, or 9, in succession.

a. How many different possible PINs are there if there are
no restrictions on the choice of digits?

b. According to a representative at the author’s local branch
of Chase Bank, there are in fact restrictions on the choice
of digits. The following choices are prohibited: (i) all four
digits identical (ii) sequences of consecutive ascending or
descending digits, such as 6543 (iii) any sequence start-
ing with 19 (birth years are too easy to guess). So if one
of the PINs in (a) is randomly selected, what is the prob-
ability that it will be a legitimate PIN (that is, not be one
of the prohibited sequences)?

¢. Someone has stolen an ATM card and knows that the first
and last digits of the PIN are 8 and 1, respectively. He has
three tries before the card is retained by the ATM (but
does not realize that). So he randomly selects the 2™ and
3" digits for the first try, then randomly selects a differ-
ent pair of digits for the second try, and yet another ran-
domly selected pair of digits for the third try (the
individual knows about the restrictions described in (b)
so selects only from the legitimate possibilities). What is
the probability that the individual gains access to the
account?

d. Recalculate the probability in (c) if the first and last dig-
its are 1 and 1, respectively.

A starting lineup in basketball consists of two guards, two

forwards, and a center.

a. A certain college team has on its roster three centers,
four guards, four forwards, and one individual (X) who
can play either guard or forward. How many different
starting lineups can be created? [Hint: Consider lineups
without X, then lineups with X as guard, then lineups
with X as forward.]

b. Now suppose the roster has 5 guards, 5 forwards, 3 cen-
ters, and 2 “swing players” (X and Y) who can play
either guard or forward. If 5 of the 15 players are ran-
domly selected, what is the probability that they consti-
tute a legitimate starting lineup?

In five-card poker, a straight consists of five cards with adja-
cent denominations (e.g., 9 of clubs, 10 of hearts, jack of
hearts, queen of spades, and king of clubs). Assuming that
aces can be high or low, if you are dealt a five-card hand,
what is the probability that it will be a straight with high
card 10? What is the probability that it will be a straight?
What is the probability that it will be a straight flush (all
cards in the same suit)?

Show that (}) = (, " ,). Give an interpretation involving
subsets.
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I 2.4 Conditional Probability

The probabilities assigned to various events depend on what is known about the exper-
imental situation when the assignment is made. Subsequent to the initial assignment,
partial information relevant to the outcome of the experiment may become available.
Such information may cause us to revise some of our probability assignments. For a
particular event A, we have used P(A) to represent the probability, assigned to A; we
now think of P(A) as the original, or unconditional probability, of the event A.

In this section, we examine how the information “an event B has occurred”
affects the probability assigned to A. For example, A might refer to an individual
having a particular disease in the presence of certain symptoms. If a blood test is
performed on the individual and the result is negative (B = negative blood test),
then the probability of having the disease will change (it should decrease, but not
usually to zero, since blood tests are not infallible). We will use the notation P(A| B)
to represent the conditional probability of A given that the event B has occurred.
B is the “conditioning event.”

As an example, consider the event A that a randomly selected student at your
university obtained all desired classes during the previous term’s registration cycle.
Presumably P(A) is not very large. However, suppose the selected student is an ath-
lete who gets special registration priority (the event B). Then P(A|B) should be sub-
stantially larger than P(A), although perhaps still not close to 1.

Example 2.24  Complex components are assembled in a plant that uses two different assembly
lines, A and A’. Line A uses older equipment than A’, so it is somewhat slower and
less reliable. Suppose on a given day line A has assembled 8 components, of which
2 have been identified as defective (B) and 6 as nondefective (B’), whereas A’ has
produced 1 defective and 9 nondefective components. This information is summa-
rized in the accompanying table.

Condition

B B’
. 2 6
Line N 1 9

Unaware of this information, the sales manager randomly selects 1 of these 18 com-
ponents for a demonstration. Prior to the demonstration
. N(A 8
P(line A component selected) = P(A) = % T 44
However, if the chosen component turns out to be defective, then the event B has
occurred, so the component must have been 1 of the 3 in the B column of the table.
Since these 3 components are equally likely among themselves after B has occurred,

2 2118 P(ANB)

PAIB) =5 =318~ pE)

2.2)
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74 CHAPTER 2 Probability

In Equation (2.2), the conditional probability is expressed as a ratio of uncon-
ditional probabilities: The numerator is the probability of the intersection of the two
events, whereas the denominator is the probability of the conditioning event B. A
Venn diagram illuminates this relationship (Figure 2.8).

A

(R,

Figure 2.8 Motivating the definition of conditional probability

Given that B has occurred, the relevant sample space is no longer S but con-
sists of outcomes in B; A has occurred if and only if one of the outcomes in the inter-
section occurred, so the conditional probability of A given B is proportional to
P(A N B). The proportionality constant 1/P(B) is used to ensure that the probability
P(B|B) of the new sample space B equals 1.

The Definition of Conditional Probability

Example 2.24 demonstrates that when outcomes are equally likely, computation of
conditional probabilities can be based on intuition. When experiments are more
complicated, though, intuition may fail us, so a general definition of conditional
probability is needed that will yield intuitive answers in simple problems. The Venn
diagram and Equation (2.2) suggest how to proceed.

DEFINITION For any two events A and B with P(B) > 0, the conditional probability of A
given that B has occurred is defined by
P(A N B)

P(A|B) = “rE) (2.3)

Example 2.25 Suppose that of all individuals buying a certain digital camera, 60% include an
optional memory card in their purchase, 40% include an extra battery, and 30%
include both a card and battery. Consider randomly selecting a buyer and let
A = {memory card purchased} and B = {battery purchased}. Then P(A) = .60,
P(B) = .40, and P(both purchased) = P(A M B) = .30. Given that the selected
individual purchased an extra battery, the probability that an optional card was also
purchased is

PANB) .30

P(AIB) = P(B) 40

75

That is, of all those purchasing an extra battery, 75% purchased an optional memory
card. Similarly,

P(battery | memory card) = P(B|A) = P(IAD(Q)B) = % = 50

Notice that P(A|B) # P(A) and P(B|A) # P(B). [ |
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The event whose probability is desired might be a union or intersection of
other events, and the same could be true of the conditioning event.

Example 2.26 A news magazine publishes three columns entitled “Art” (A), “Books” (B), and
“Cinema” (C). Reading habits of a randomly selected reader with respect to these

columns are
Read regularly A B C ANB ANC BNC ANBNC
Probability 14 .23 37 .08 .09 13 .05

Figure 2.9 illustrates relevant probabilities.

Figure 2.9 Venn diagram for Example 2.26

We thus have

_P(ANB) .08
P(A|B)—7P(B) = S, = 348
PAN(BUC) .04+ .05+ .03 .12
P(A|IBUC) = = =—=.255
(Al ) P(B U C) 47 47
B _PAN(AUBUQC))
P(A|reads at least one) = P(A|[AUB U C) = P(AUB U C)
N R U SR
PAUBUC) .49
and
P(AUB)NC .04 + .05 + .08
P(AUB|C) = (« )NC)_ = 459 ]

P(C) 37

The Multiplication Rule for P(A N B)

The definition of conditional probability yields the following result, obtained by
multiplying both sides of Equation (2.3) by P(B).

The Multiplication Rule
P(ANB) = P(A|B) - P(B)

This rule is important because it is often the case that P(A M B) is desired,
whereas both P(B) and P(A|B) can be specified from the problem description.
Consideration of P(B| A) gives P(A N B) = P(B|A) - P(A)
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Example 2.27 Four individuals have responded to a request by a blood bank for blood donations.
None of them has donated before, so their blood types are unknown. Suppose only
type O+ is desired and only one of the four actually has this type. If the potential
donors are selected in random order for typing, what is the probability that at least
three individuals must be typed to obtain the desired type?

Making the identification B = {first type not O+} and A = {second type not

O+}, P(B) = %. Given that the first type is not O+, two of the three individuals
left are not O+, so P(A|B) = % The multiplication rule now gives

P(at least three individuals are typed) = P(A M B)

= P(A|B) - P(B)

23 6

T34 12

=5 m

The multiplication rule is most useful when the experiment consists of several
stages in succession. The conditioning event B then describes the outcome of the first
stage and A the outcome of the second, so that P(A|B)—conditioning on what
occurs first—will often be known. The rule is easily extended to experiments involv-
ing more than two stages. For example,

P(A, N A, N Ay = P(A|A, N Ay - P(A, N A,)
P(As|A; N A) - P(AAy) - P(A) (2.4)

where A, occurs first, followed by A,, and finally A,.

Example 2.28 For the blood typing experiment of Example 2.27,
P(third type is O+) = P(third is| first isn’t N second isn’t)
- P(second isn’t| first isn’t) - P(first isn’t)
123 1
2 3 4 4 o

When the experiment of interest consists of a sequence of several stages, it is
convenient to represent these with a tree diagram. Once we have an appropriate tree
diagram, probabilities and conditional probabilities can be entered on the various
branches; this will make repeated use of the multiplication rule quite straightforward.

Example 2.29 A chain of video stores sells three different brands of DVD players. Of its DVD
player sales, 50% are brand 1 (the least expensive), 30% are brand 2, and 20% are
brand 3. Each manufacturer offers a 1-year warranty on parts and labor. It is known
that 25% of brand 1’s DVD players require warranty repair work, whereas the cor-
responding percentages for brands 2 and 3 are 20% and 10%, respectively.

1. What is the probability that a randomly selected purchaser has bought a brand 1
DVD player that will need repair while under warranty?

2. What is the probability that a randomly selected purchaser has a DVD player
that will need repair while under warranty?

3. If a customer returns to the store with a DVD player that needs warranty repair
work, what is the probability that it is a brand 1 DVD player? A brand 2 DVD
player? A brand 3 DVD player?
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The first stage of the problem involves a customer selecting one of the three
brands of DVD player. Let A; = {brand i is purchased}, for i = 1, 2, and 3. Then
P(A) = .50, P(A)) = .30, and P(A;) = .20. Once a brand of DVD player is
selected, the second stage involves observing whether the selected DVD player
needs warranty repair. With B = {needs repair} and B’ = {doesn’t need repair}, the
given information implies that P(B|A,) = .25, P(B|A,) = .20, and P(B|A;) = .10.

The tree diagram representing this experimental situation is shown in
Figure 2.10. The initial branches correspond to different brands of DVD players;
there are two second-generation branches emanating from the tip of each initial
branch, one for “needs repair” and the other for “doesn’t need repair.” The probabil-
ity P(A;) appears on the ith initial branch, whereas the conditional probabilities
P(B|A,) and P(B’| A,) appear on the second-generation branches. To the right of each
second-generation branch corresponding to the occurrence of B, we display the
product of probabilities on the branches leading out to that point. This is simply the
multiplication rule in action. The answer to the question posed in 1 is thus
P(A, N B) = P(B|A)) - P(A,) = .125The answer to question 2 is

P(B)

P[(brand 1 and repair) or (brand 2 and repair) or (brand 3 and repair)]
P(A, N B) + P(A, N B) + P(A; N B)
= .125 + .060 + .020 = .205

P(B|A)-P(A) = PBNA) = .125

P(B | A+ P(A;) = P(BN Ay) = .060

P(B| Ag) - P(Ag) = P(BN Ay = .020

P(B) = .205

Figure 2.10 Tree diagram for Example 2.29

Finally,
P(A,NB) .125
P(A1|B) = W = ﬁ = .61
P(A, N B) .060
P(A2|B) = W = ﬁ = 29
and

P(A;|B) = 1 — P(A,|B) — P(A,|B) = .10
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The initial or prior probability of brand 1 is .50. Once it is known that the
selected DVD player needed repair, the posterior probability of brand 1 increases to
.61. This is because brand 1 DVD players are more likely to need warranty repair
than are the other brands. The posterior probability of brand 3 is P(A;|B) = .10,
which is much less than the prior probability P(A;) = .20. [ |

Bayes' Theorem

The computation of a posterior probability P(Aj| B) from given prior probabilities
P(A,) and conditional probabilities P(B|A;) occupies a central position in elementary
probability. The general rule for such computations, which is really just a simple
application of the multiplication rule, goes back to Reverend Thomas Bayes, who
lived in the eighteenth century. To state it we first need another result. Recall that
events A, ..., A are mutually exclusive if no two have any common outcomes. The
events are exhaustive if one A, must occur, so that A, U ... UA, = &.

The Law of Total Probability

Let A, ..., A, be mutually exclusive and exhaustive events. Then for any
other event B,

P(B) = P(B[ADP(A) + --- + P(B|AJP(A)

k
%P(B| A)P(A) (2.5)

Proof Because the A;’s are mutually exclusive and exhaustive, if B occurs it must be
in conjunction with exactly one of the A;’s. Thatis, B = (A, N B) U ... U (A, N B),
where the events (A; M B) are mutually exclusive. This “partitioning of B” is illustrated
in Figure 2.11. Thus

P(B) = EK:P(Ai NB) = ﬁP(B’Ai)P(Ai)
i=1 i=1

is desired.

Figure 2.11 Partition of B by mutually exclusive and exhaustive A;'s ]

Example 2.30  An individual has 3 different email accounts. Most of her messages, in fact 70%,
come into account #1, whereas 20% come into account #2 and the remaining 10%
into account #3. Of the messages into account #1, only 1% are spam, whereas the
corresponding percentages for accounts #2 and #3 are 2% and 5%, respectively.
What is the probability that a randomly selected message is spam?

To answer this question, let’s first establish some notation:

A, = {message is from account # i} fori = 1,2,3, B = {message is spam}
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Then the given percentages imply that
P(A,) = .70, P(A,) = .20, P(A;) = .10
P(B|A) = .01, P(B|A,) = .02, P(B|A;) = .05

Now it is simply a matter of substituting into the equation for the law of total
probability:

P(B) = (.01)(.70) + (.02)(.20) + (.05)(.10) = .016

In the long run, 1.6% of this individual’s messages will be spam. |

Bayes’ Theorem

LetA,, A, ..., A beacollection of k mutually exclusive and exhaustive events
with prior probabilities P(A;) (i = 1, ..., k). Then for any other event B for
which P(B) > 0, the posterior probability of A; given that B has occurred is
P(A: N B) P(B|A)P(A)

P'(B) = AP i=1,...,k (26
EP(B|Ai) - P(A)
i=1

P(A|B) =

The transition from the second to the third expression in (2.6) rests on using
the multiplication rule in the numerator and the law of total probability in the
denominator. The proliferation of events and subscripts in (2.6) can be a bit intimi-
dating to probability newcomers. As long as there are relatively few events in the
partition, a tree diagram (as in Example 2.29) can be used as a basis for calculating
posterior probabilities without ever referring explicitly to Bayes’ theorem.

Example 2.31 Incidence of a rare disease. Only 1 in 1000 adults is afflicted with a rare disease for
which a diagnostic test has been developed. The test is such that when an individual
actually has the disease, a positive result will occur 99% of the time, whereas an
individual without the disease will show a positive test result only 2% of the time. If
a randomly selected individual is tested and the result is positive, what is the proba-
bility that the individual has the disease?

To use Bayes’ theorem, let A, = individual has the disease, A, = individual
does not have the disease, and B = positive test result. Then P(A,) = .001,
P(A,) = .999, P(B|A,) = .99, and P(B|A,) = .02. The tree diagram for this prob-
lem is in Figure 2.12.

P(A, N B) = .00099

P(A, N B) = .01998

Figure 2.12 Tree diagram for the rare-disease problem
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Next to each branch corresponding to a positive test result, the multiplication rule
yields the recorded probabilities. Therefore, P(B) = .00099 + .01998 = .02097,
from which we have

P(A, N'B) _ .00099
P(B) 02097

This result seems counterintuitive; the diagnostic test appears so accurate that we
expect someone with a positive test result to be highly likely to have the disease,
whereas the computed conditional probability is only .047. However, the rarity of the
disease implies that most positive test results arise from errors rather than from dis-
eased individuals. The probability of having the disease has increased by a multiplica-
tive factor of 47 (from prior .001 to posterior .047); but to get a further increase in the

P(A,|B) =

= .047

posterior probability, a diagnostic test with much smaller error rates is needed. |

| EXERCISES  Section 2.4 (45-69)

45.

46.

47.

The population of a particular country consists of three eth-
nic groups. Each individual belongs to one of the four major
blood groups. The accompanying joint probability table
gives the proportions of individuals in the various ethnic
group-blood group combinations.

48.

Reconsider the system defect situation described in

Exercise 26 (Section 2.2).

a. Given that the system has a type 1 defect, what is the
probability that it has a type 2 defect?

b. Given that the system has a type 1 defect, what is the
probability that it has all three types of defects?

Blood Group c. Given that the system has at least one type of defect,
what is the probability that it has exactly one type of
defect?

© A B AB d. Given that the system has both of the first two types of

1 .082 .106 .008 .004 defects, what is the probability that it does not have the
Ethnic Group 2 135 141 .018 .006 third type of defect?
3 215 .200 .065 .020

Suppose that an individual is randomly selected from the
population, and define events by A = {type A selected},

49.

The accompanying table gives information on the type of
coffee selected by someone purchasing a single cup at a par-
ticular airport kiosk.

B = {type B selected}, and C = {ethnic group 3 selected}. Small Medium Large

a. Calculate P(A), P(C), and P(A N C).

b. Calculate both P(A|C) and P(C|A), and explain in con- Regular 14% 20% 26%
Decaf 20% 10% 10%

text what each of these probabilities represents.
c. Ifthe selected individual does not have type B blood, what
is the probability that he or she is from ethnic group 1?

Suppose an individual is randomly selected from the popu-
lation of all adult males living in the United States. Let A be
the event that the selected individual is over 6 ft in height,
and let B be the event that the selected individual is a pro-
fessional basketball player. Which do you think is larger,
P(A|B) or P(B| A)? Why?

Return to the credit card scenario of Exercise 12 (Section 2.2),
where A = {Visa}, B = {MasterCard}, P(A) = .5,
P(B) = .4,and P(A M B) = .25. Calculate and interpret each

Consider randomly selecting such a coffee purchaser.

a. What is the probability that the individual purchased a
small cup? A cup of decaf coffee?

b. If we learn that the selected individual purchased a small
cup, what now is the probability that he/she chose decaf
coffee, and how would you interpret this probability?

c. If we learn that the selected individual purchased decaf,
what now is the probability that a small size was
selected, and how does this compare to the correspon-
ding unconditional probability of (a)?

of the following probabilities (a \enn diagram might help). 50. A department store sells sport shirts in three sizes (small,
a. P(B|A) b. P(B'|A) medium, and large), three patterns (plaid, print, and stripe),
c. P(A|B) d. P(A'|B) and two sleeve lengths (long and short). The accompanying

e. Given that the selected individual has at least one card,
what is the probability that he or she has a Visa card?

tables give the proportions of shirts sold in the various cat-
egory combinations.
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51.

52.

Short-sleeved

Pattern
Size PI Pr St
S .04 .02 .05
M .08 .07 A2
L .03 .07 .08
Long-sleeved

Pattern
Size PI Pr St
S .03 .02 .03
M .10 .05 .07
L .04 .02 .08

a. What is the probability that the next shirt sold is a
medium, long-sleeved, print shirt?

b. What is the probability that the next shirt sold is a
medium print shirt?

¢. What is the probability that the next shirt sold is a short-
sleeved shirt? A long-sleeved shirt?

d. What is the probability that the size of the next shirt sold
is medium? That the pattern of the next shirt sold is a
print?

e. Given that the shirt just sold was a short-sleeved plaid,
what is the probability that its size was medium?

f. Given that the shirt just sold was a medium plaid, what
is the probability that it was short-sleeved? Long-
sleeved?

One box contains six red balls and four green balls, and a
second box contains seven red balls and three green balls. A
ball is randomly chosen from the first box and placed in the
second box. Then a ball is randomly selected from the sec-
ond box and placed in the first box.
a. What is the probability that a red ball is selected from the
first box and a red ball is selected from the second box?
b. At the conclusion of the selection process, what is the
probability that the numbers of red and green balls in the
first box are identical to the numbers at the beginning?

A system consists of two identical pumps, #1 and #2. If one
pump fails, the system will still operate. However, because
of the added strain, the remaining pump is now more likely
to fail than was originally the case. That is, r = P(#2 fails |
#1 fails) > P(#2 fails) = q. If at least one pump fails by the
end of the pump design life in 7% of all systems and both
pumps fail during that period in only 1%, what is the prob-
ability that pump #1 will fail during the pump design life?

53.

54.

55.

56.

57.

58.

59.

60.

61.

2.4 Conditional Probability 81

A certain shop repairs both audio and video components. Let
A denote the event that the next component brought in for
repair is an audio component, and let B be the event that the
next component is a compact disc player (so the event B is
contained in A). Suppose that P(A) = .6 and P(B) = .05.
What is P(B| A)?

In Exercise 13, A; = {awarded project i}, for i = 1,2, 3.
Use the probabilities given there to compute the following
probabilities, and explain in words the meaning of each
one.

a. P(A,| Ay b. P(A, N A|A)

c. P(A,UA;|A) d. PA,NA,NAJA UA, UA).
Deer ticks can be carriers of either Lyme disease or human
granulocytic ehrlichiosis (HGE). Based on a recent study,
suppose that 16% of all ticks in a certain location carry
Lyme disease, 10% carry HGE, and 10% of the ticks that
carry at least one of these diseases in fact carry both of
them. If a randomly selected tick is found to have carried
HGE, what is the probability that the selected tick is also a
carrier of Lyme disease?

For any events A and B with P(B) > 0, show that
P(A|B) + P(A'|B) = 1.
If P(B| A) > P(B), show that P(B’| A) < P(B’). [Hint: Add
P(B’| A) to both sides of the given inequality and then use
the result of Exercise 56.]

Show that for any three events A, B, and C with P(C) > 0,
P(A U B|C) = P(A|C) + P(B|C) — P(A N B|C).

At a certain gas station, 40% of the customers use regular

gas (A,), 35% use plus gas (A,), and 25% use premium (A,).

Of those customers using regular gas, only 30% fill their

tanks (event B). Of those customers using plus, 60% fill

their tanks, whereas of those using premium, 50% fill their

tanks.

a. What is the probability that the next customer will
request plus gas and fill the tank (A, N B)?

b. What is the probability that the next customer fills the
tank?

c. If the next customer fills the tank, what is the probability
that regular gas is requested? Plus? Premium?

Seventy percent of the light aircraft that disappear while

in flight in a certain country are subsequently discovered.

Of the aircraft that are discovered, 60% have an emer-

gency locator, whereas 90% of the aircraft not discovered

do not have such a locator. Suppose a light aircraft has

disappeared.

a. If it has an emergency locator, what is the probability
that it will not be discovered?

b. If it does not have an emergency locator, what is the
probability that it will be discovered?

Components of a certain type are shipped to a supplier in
batches of ten. Suppose that 50% of all such batches contain
no defective components, 30% contain one defective compo-
nent, and 20% contain two defective components. Two com-
ponents from a batch are randomly selected and tested. What
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62.

63.

64.

65.
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are the probabilities associated with 0, 1, and 2 defective

components being in the batch under each of the following

conditions?

a. Neither tested component is defective.

b. One of the two tested components is defective. [Hint:
Draw a tree diagram with three first-generation branches
for the three different types of batches.]

A company that manufactures video cameras produces a
basic model and a deluxe model. Over the past year, 40%
of the cameras sold have been of the basic model. Of
those buying the basic model, 30% purchase an extended
warranty, whereas 50% of all deluxe purchasers do so. If
you learn that a randomly selected purchaser has an
extended warranty, how likely is it that he or she has a
basic model?

For customers purchasing a refrigerator at a certain appli-
ance store, let A be the event that the refrigerator was
manufactured in the U.S., B be the event that the refriger-
ator had an icemaker, and C be the event that the customer
purchased an extended warranty. Relevant probabilities
are

P(A) = .75 P(B|A) = .9 P(B|A) = .8
P(C/ANB)=.8 P(C|ANB)=.6
P(C/A'NB)=.7 PCC|ANB) =23

a. Construct a tree diagram consisting of first-, second-,
and third-generation branches, and place an event label
and appropriate probability next to each branch.

. Compute P(A N B N C).

Compute P(B N C).

. Compute P(C).

Compute P(A|B N C), the probability of a U.S. pur-
chase given that an icemaker and extended warranty are
also purchased.

© O 0T

The Reviews editor for a certain scientific journal decides
whether the review for any particular book should be short
(1-2 pages), medium (3—4 pages), or long (5-6 pages). Data
on recent reviews indicates that 60% of them are short, 30%
are medium, and the other 10% are long. Reviews are sub-
mitted in either Word or LaTeX. For short reviews, 80% are
in Word, whereas 50% of medium reviews are in Word and
30% of long reviews are in Word. Suppose a recent review
is randomly selected.
a. What is the probability that the selected review was sub-
mitted in Word format?
b. If the selected review was submitted in Word format,
what are the posterior probabilities of it being short,
medium, or long?

A large operator of timeshare complexes requires anyone
interested in making a purchase to first visit the site of
interest. Historical data indicates that 20% of all potential
purchasers select a day visit, 50% choose a one-night
visit, and 30% opt for a two-night visit. In addition, 10%
of day visitors ultimately make a purchase, 30% of one-
night visitors buy a unit, and 20% of those visiting for two

66.

67.

68.

69.

nights decide to buy. Suppose a visitor is randomly
selected and is found to have made a purchase. How likely
is it that this person made a day visit? A one-night visit?
A two-night visit?

Consider the following information about travelers on
vacation (based partly on a recent Travelocity poll): 40%
check work email, 30% use a cell phone to stay connected
to work, 25% bring a laptop with them, 23% both check
work email and use a cell phone to stay connected, and
51% neither check work email nor use a cell phone to stay
connected nor bring a laptop. In addition, 88 out of every

100 who bring a laptop also check work email, and 70 out

of every 100 who use a cell phone to stay connected also

bring a laptop.

a. What is the probability that a randomly selected traveler
who checks work email also uses a cell phone to stay
connected?

b. What is the probability that someone who brings a
laptop on vacation also uses a cell phone to stay
connected?

c. Ifthe randomly selected traveler checked work email and
brought a laptop, what is the probability that he/she uses
a cell phone to stay connected?

There has been a great deal of controversy over the last sev-
eral years regarding what types of surveillance are appro-
priate to prevent terrorism. Suppose a particular
surveillance system has a 99% chance of correctly identify-
ing a future terrorist and a 99.9% chance of correctly iden-
tifying someone who is not a future terrorist. If there are
1000 future terrorists in a population of 300 million, and
one of these 300 million is randomly selected, scrutinized
by the system, and identified as a future terrorist, what is the
probability that he/she actually is a future terrorist? Does
the value of this probability make you uneasy about using
the surveillance system? Explain.

A friend who lives in Los Angeles makes frequent consult-
ing trips to Washington, D.C.; 50% of the time she travels on
airline #1, 30% of the time on airline #2, and the remaining
20% of the time on airline #3. For airline #1, flights are late
into D.C. 30% of the time and late into L.A. 10% of the time.
For airline #2, these percentages are 25% and 20%, whereas
for airline #3 the percentages are 40% and 25%. If we learn
that on a particular trip she arrived late at exactly one of the
two destinations, what are the posterior probabilities of hav-
ing flown on airlines #1, #2, and #3?Assume that the chance
of a late arrival in L.A. is unaffected by what happens on the
flight to D.C. [Hint: From the tip of each first-generation
branch on a tree diagram, draw three second-generation
branches labeled, respectively, 0 late, 1 late, and 2 late.]

In Exercise 59, consider the following additional informa-
tion on credit card usage:

70% of all regular fill-up customers use a credit card.
50% of all regular non-fill-up customers use a credit card.
60% of all plus fill-up customers use a credit card.

50% of all plus non-fill-up customers use a credit card.
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2.5 Independence 83

50% of all premium fill-up customers use a credit card. c. {premium and credit card}

40% of all premium non-fill-up customers use a credit card. d. {fill-up and credit card}

Compute the probability of each of the following events for e. {credit card} _ _

the next customer to arrive (a tree diagram might help). f. If the next customer uses a credit card, what is the prob-
a. {plus and fill-up and credit card} ability that premium was requested?

b. {premium and non-fill-up and credit card}

I 2.5 Independence

The definition of conditional probability enables us to revise the probability P(A)
originally assigned to A when we are subsequently informed that another event B has
occurred; the new probability of A is P(A|B). In our examples, it was frequently the
case that P(A|B) differed from the unconditional probability P(A), indicating that
the information “B has occurred” resulted in a change in the chance of A occurring.
Often the chance that A will occur or has occurred is not affected by knowledge that
B has occurred, so that P(A| B) = P(A). It is then natural to regard A and B as inde-
pendent events, meaning that the occurrence or nonoccurrence of one event has no
bearing on the chance that the other will occur.

DEFINITION Two events A and B are independent if P(A|B) = P(A) and are dependent
otherwise.

The definition of independence might seem “unsymmetric” because we do not
also demand that P(B| A) = P(B). However, using the definition of conditional prob-
ability and the multiplication rule,

P(ANB) P(A|B)P(B)
P(B|A) = = 2.7

The right-hand side of Equation (2.7) is P(B) if and only if P(A|B) = P(A)
(independence), so the equality in the definition implies the other equality (and vice
versa). It is also straightforward to show that if A and B are independent, then so are
the following pairs of events: (1) A" and B, (2) A and B’, and (3) A" and B’.

Example 2.32  Consider a gas station with six pumps numbered 1, 2, .. ., 6, and let E; denote the sim-
ple event that a randomly selected customer uses pumpi (i = 1,..., 6). Suppose that

P(E,)) = P(Eg) = .10, P(E,) = P(E;) = .15, P(E;) = P(E,)) = .25
Define events A, B, C by
A={246},B=1{1,273},C=1{23,4,5}

We then have P(A) = .50, P(A|B) = .30, and P(A|C) = .50. That is, events A and
B are dependent, whereas events A and C are independent. Intuitively, A and C are
independent because the relative division of probability among even- and odd-num-
bered pumps is the same among pumps 2, 3, 4, 5 as it is among all six pumps. H

Example 2.33  Let A and B be any two mutually exclusive events with P(A) > 0. For example, for
a randomly chosen automobile, let A = {the car has a four cylinder engine} and
B = {the car has a six cylinder engine}. Since the events are mutually exclusive, if
B occurs, then A cannot possibly have occurred, so P(A|B) = 0 # P(A). The mes-
sage here is that if two events are mutually exclusive, they cannot be independent.
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84 CHAPTER 2 Probability

When A and B are mutually exclusive, the information that A occurred says some-
thing about B (it cannot have occurred), so independence is precluded. [ |

The Multiplication Rule for P(A N B)

Frequently the nature of an experiment suggests that two events A and B should be
assumed independent. This is the case, for example, if a manufacturer receives a cir-
cuit board from each of two different suppliers, each board is tested on arrival, and
A = {firstis defective} and B = {second is defective}. If P(A) = .1, it should also
be the case that P(A| B) = .1; knowing the condition of the second board shouldn’t
provide information about the condition of the first. The probability that both events
will occur is easily calculated from the individual event probabilities when the events
are independent.

PROPOSITION A and B are independent if and only if (iff)
P(A N B) = P(A) - P(B) (2.8)

The verification of this multiplication rule is as follows:
P(ANB) = P(A|B) - P(B) = P(A) - P(B) (2.9)

where the second equality in Equation (2.9) is valid iff A and B are independent.
Equivalence of independence and Equation (2.8) imply that the latter can be used as
a definition of independence.

Example 2.34  Itis known that 30% of a certain company’s washing machines require service while
under warranty, whereas only 10% of its dryers need such service. If someone pur-
chases both a washer and a dryer made by this company, what is the probability that
both machines will need warranty service?

Let A denote the event that the washer needs service while under warranty,
and let B be defined analogously for the dryer. Then P(A) = .30 and P(B) = .10.
Assuming that the two machines will function independently of one another, the
desired probability is

P(A N B) = P(A) - P(B) = (.30)(.10) = .03 |

It is straightforward to show that A and B are independent iff A" and B are inde-
pendent, A and B’ are independent, and A'and B’ are independent. Thus in Example
2.34, the probability that neither machine needs service is

P(A' N B") = P(A') - P(B') = (.70)(.90) = .63

Example 2.35 Each day, Monday through Friday, a batch of components sent by a first supplier
arrives at a certain inspection facility. Two days a week, a batch also arrives from
a second supplier. Eighty percent of all supplier 1’s batches pass inspection, and
90% of supplier 2’s do likewise. What is the probability that, on a randomly
selected day, two batches pass inspection? We will answer this assuming that
on days when two batches are tested, whether the first batch passes is independ-
ent of whether the second batch does so. Figure 2.13 displays the relevant
information.
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4 X (8 X .9

Figure 2.13 Tree diagram for Example 2.35

P(two pass) = P(two received M both pass)
P(both pass | two received) - P(two received)
[(:8)(.9)](.4) = .288 |

Independence of More Than Two Events

The notion of independence of two events can be extended to collections of more
than two events. Although it is possible to extend the definition for two independent
events by working in terms of conditional and unconditional probabilities, it is more
direct and less cumbersome to proceed along the lines of the last proposition.

DEFINITION Events A, . .., A, are mutually independent if forevery k (k = 2,3,...,n)
and every subset of indices iy, iy, . . ., iy,

P(A,NA N... NA) =PA)-PA) - -P@A)

To paraphrase the definition, the events are mutually independent if the prob-
ability of the intersection of any subset of the n events is equal to the product of the
individual probabilities. In using the multiplication property for more than two inde-
pendent events, it is legitimate to replace one or more of the A;s by their comple-
ments (e.g., if A, A,, and A, are independent events, so are A/, Aj, and Aj). As was
the case with two events, we frequently specify at the outset of a problem the inde-
pendence of certain events. The probability of an intersection can then be calculated
via multiplication.

Example 2.36  The article “Reliability Evaluation of Solar Photovoltaic Arrays”(Solar Energy, 2002:
129-141) presents various configurations of solar photovoltaic arrays consisting of
crystalline silicon solar cells. Consider first the system illustrated in Figure 2.14(a).

Figure 2.14 System configurations for Example 2.36: (a) series-parallel; (b) total-cross-tied
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There are two subsystems connected in parallel, each one containing three cells. In
order for the system to function, at least one of the two parallel subsystems must
work. Within each subsystem, the three cells are connected in series, so a subsystem
will work only if all cells in the subsystem work. Consider a particular lifetime value
t,, and supose we want to determine the probability that the system lifetime exceeds
t,. Let A; denote the event that the lifetime of cell i exceeds t, (i = 1,2, ..., 6). We
assume that the Ajs are independent events (whether any particular cell lasts more
than t, hours has no bearing on whether or not any other cell does) and that
P(A;) = .9 for every i since the cells are identical. Then
P(system lifetime exceeds t;) = P[(A; N A, N A;) U (A, N A N A)]
=PA, NA,NA) + PA, NANAY)
= P[(A, N A, NA) N (A, NA; N AY]
= (9)(9)(.9) + (9)(:9)(:9) — (9(9(9(.9)(:9)(.9) = .927
Alternatively,

P(system lifetime exceeds t)) = 1 — P(both subsystem lives are < t;)
= 1 — [P(subsystem life is = t,)]?
=1 — [1 — P(subsystem life is > t,)]?
=1-1[1- (9% = .927
Next consider the total-cross-tied system shown in Figure 2.14(b), obtained from the
series-parallel array by connecting ties across each column of junctions. Now the
system fails as soon as an entire column fails, and system lifetime exceeds t, only if
the life of every column does so. For this configuration,
P(system lifetime is at least t,) = [P(column lifetime exceeds t,)]*
= [1 — P(column lifetime is = ty)]®
= [1 — P(both cells in a column have lifetime = t,)]*
=1 -1 - .97 =.970 [ |

| EXERCISES Section 2.5 (70-89)

70. Reconsider the credit card scenario of Exercise 47 (Section 72. In Exercise 13, is any A; independent of any other A;?

2.4), and show that A and B are dependent first by using the
definition of independence and then by verifying that the
multiplication property does not hold.

Answer using the multiplication property for independent
events.

73. If A and B are independent events, show that A’ and B are

71. An oil exploration company currently has two active proj- also independent. [Hint: First establish a relationship
ects, one in Asia and the other in Europe. Let A be the event between P(A’ N B), P(B), and P(A N B).]

that the Asian project is successful and B be the event that 74. The proportions of blood phenotypes in the U.S. population

the European project is successful. Suppose that A and B are

independent events with P(A) = .4 and P(B) = .7.

a. If the Asian project is not successful, what is the proba-
bility that the European project is also not successful?
Explain your reasoning.

b. What is the probability that at least one of the two proj-
ects will be successful?

c. Given that at least one of the two projects is successful,
what is the probability that only the Asian project is
successful?

are as follows:

A B
40 A1

AB )
.04 45

Assuming that the phenotypes of two randomly selected
individuals are independent of one another, what is the
probability that both phenotypes are O? What is the proba-
bility that the phenotypes of two randomly selected individ-
uals match?
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78.

79.

80.

One of the assumptions underlying the theory of control
charting (see Chapter 16) is that successive plotted points
are independent of one another. Each plotted point can sig-
nal either that a manufacturing process is operating cor-
rectly or that there is some sort of malfunction. Even when
a process is running correctly, there is a small probability
that a particular point will signal a problem with the
process. Suppose that this probability is .05. What is the
probability that at least one of 10 successive points indicates
a problem when in fact the process is operating correctly?
Answer this question for 25 successive points.

In October, 1994, a flaw in a certain Pentium chip installed
in computers was discovered that could result in a wrong
answer when performing a division. The manufacturer ini-
tially claimed that the chance of any particular division being
incorrect was only 1 in 9 billion, so that it would take thou-
sands of years before a typical user encountered a mistake.
However, statisticians are not typical users; some modern
statistical techniques are so computationally intensive that a
billion divisions over a short time period is not outside the
realm of possibility. Assuming that the 1 in 9 billion figure is
correct and that results of different divisions are independent
of one another, what is the probability that at least one error
occurs in one billion divisions with this chip?

An aircraft seam requires 25 rivets. The seam will have to

be reworked if any of these rivets is defective. Suppose riv-

ets are defective independently of one another, each with the

same probability.

a. If 20% of all seams need reworking, what is the proba-
bility that a rivet is defective?

b. How small should the probability of a defective rivet be
to ensure that only 10% of all seams need reworking?

A boiler has five identical relief valves. The probability that
any particular valve will open on demand is .95. Assuming
independent operation of the valves, calculate P(at least one
valve opens) and P(at least one valve fails to open).

Two pumps connected in parallel fail independently of one
another on any given day. The probability that only the older
pump will fail is .10, and the probability that only the newer
pump will fail is .05. What is the probability that the pump-
ing system will fail on any given day (which happens if both
pumps fail)?

Consider the system of components connected as in the
accompanying picture. Components 1 and 2 are connected
in parallel, so that subsystem works iff either 1 or 2 works;
since 3 and 4 are connected in series, that subsystem works
iff both 3 and 4 work. If components work independently of
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one another and P(componentworks) = .9, calculate
P(system works).

Refer back to the series-parallel system configuration intro-
duced in Example 2.35, and suppose that there are only two
cells rather than three in each parallel subsystem [in Figure
2.14(a), eliminate cells 3 and 6, and renumber cells 4 and 5 as
3 and 4]. Using P(A) = .9, the probability that system life-
time exceeds t, is easily seen to be .9639. To what value
would .9 have to be changed in order to increase the system
lifetime reliability from .9639 to .99? [Hint: Let P(A) = p,
express system reliability in terms of p, and then let x = p2]

Consider independently rolling two fair dice, one red and
the other green. Let A be the event that the red die shows 3
dots, B be the event that the green die shows 4 dots, and C
be the event that the total number of dots showing on the
two dice is 7. Are these events pairwise independent (i.e.,
are A and B independent events, are A and C independent,
and are B and C independent)? Are the three events mutu-
ally independent?

Components arriving at a distributor are checked for defects

by two different inspectors (each component is checked by

both inspectors). The first inspector detects 90% of all

defectives that are present, and the second inspector does

likewise. At least one inspector does not detect a defect on

20% of all defective components. What is the probability

that the following occur?

a. A defective component will be detected only by the first
inspector? By exactly one of the two inspectors?

b. All three defective components in a batch escape detec-
tion by both inspectors (assuming inspections of differ-
ent components are independent of one another)?

Seventy percent of all vehicles examined at a certain emis-
sions inspection station pass the inspection. Assuming that
successive vehicles pass or fail independently of one
another, calculate the following probabilities:

a. P(all of the next three vehicles inspected pass)

P(at least one of the next three inspected fails)
P(exactly one of the next three inspected passes)

. P(at most one of the next three vehicles inspected passes)
Given that at least one of the next three vehicles passes
inspection, what is the probability that all three pass (a
conditional probability)?

© Q0T

A quality control inspector is inspecting newly produced

items for faults. The inspector searches an item for faults in

a series of independent fixations, each of a fixed duration.

Given that a flaw is actually present, let p denote the proba-

bility that the flaw is detected during any one fixation (this

model is discussed in “Human Performance in Sampling

Inspection,” Human Factors, 1979: 99-105).

a. Assuming that an item has a flaw, what is the probability
that it is detected by the end of the second fixation (once
a flaw has been detected, the sequence of fixations ter-
minates)?

b. Give an expression for the probability that a flaw will be
detected by the end of the nth fixation.
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c. If when a flaw has not been detected in three fixations,
the item is passed, what is the probability that a flawed
item will pass inspection?

d. Suppose 10% of all items contain a flaw [P(randomly
chosen item is flawed) = .1]. With the assumption of
part (c), what is the probability that a randomly chosen
item will pass inspection (it will automatically pass if it
is not flawed, but could also pass if it is flawed)?

e. Given that an item has passed inspection (no flaws in
three fixations), what is the probability that it is actually
flawed? Calculate for p = .5.

a. A lumber company has just taken delivery on a lot of
10,0002 X 4 bhoards. Suppose that 20% of these boards
(2,000) are actually too green to be used in first-quality
construction. Two boards are selected at random, one
after the other. Let A = {the first board is green} and
B = {the second board is green}. Compute P(A), P(B),
and P(A N B) (a tree diagram might help). Are A and B
independent?

b. With A and B independent and P(A) = P(B) = .2, what
is P(A N B)? How much difference is there between this
answer and P(A M B) in part (a)? For purposes of calcu-
lating P(A M B), can we assume that A and B of part (a)
are independent to obtain essentially the correct
probability?

c. Suppose the lot consists of ten boards, of which two are
green. Does the assumption of independence now yield
approximately the correct answer for P(A M B)? What is
the critical difference between the situation here and that
of part (2)? When do you think an independence assump-
tion would be valid in obtaining an approximately cor-
rect answer to P(A N B)?

Consider randomly selecting a single individual and having
that person test drive 3 different vehicles. Define events A,,
A, and A, by

A, = likes vehicle #1
A; = likes vehicle #3

A, = likes vehicle #2

88.
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Suppose that P(A,) = .55, P(A,) = .65, P(A;) = .70,

P(A, UA)) = .80, P(A, N A;) = .40, and

P(A, UA,UA;) = .88.

a. What is the probability that the individual likes both
vehicle #1 and vehicle #2?

b. Determine and interpret P(A,|A;).

c. Are A, and A, independent events? Answer in two dif-
ferent ways.

d. If you learn that the individual did not like vehicle #1,
what now is the probability that he/she liked at least one
of the other two vehicles?

Professor Stan der Deviation can take one of two routes on
his way home from work. On the first route, there are four
railroad crossings. The probability that he will be stopped
by a train at any particular one of the crossings is .1, and
trains operate independently at the four crossings. The other
route is longer but there are only two crossings, independ-
ent of one another, with the same stoppage probability for
each as on the first route. On a particular day, Professor
Deviation has a meeting scheduled at home for a certain
time. Whichever route he takes, he calculates that he will be
late if he is stopped by trains at at least half the crossings
encountered.
a. Which route should he take to minimize the probability
of being late to the meeting?
b. If he tosses a fair coin to decide on a route and he is late,
what is the probability that he took the four-crossing
route?

Suppose identical tags are placed on both the left ear and the
right ear of a fox. The fox is then let loose for a period of
time. Consider the two events C, = {left ear tag is lost} and
C, = {rightear tag is lost}. Let = = P(C,) = P(C,), and
assume C, and C, are independent events. Derive an expres-
sion (involving ) for the probability that exactly one tag is
lost, given that at most one is lost (“Ear Tag Loss in Red
Foxes,” J. Wildlife Mgmt., 1976: 164-167). [Hint: Draw a
tree diagram in which the two initial branches refer to
whether the left ear tag was lost.]

SUPPLEMENTARY EXERCISES (90-114)

90.

A small manufacturing company will start operating a night

shift. There are 20 machinists employed by the company.

a. If a night crew consists of 3 machinists, how many dif-
ferent crews are possible?

b. If the machinists are ranked 1, 2, . . ., 20 in order of com-
petence, how many of these crews would not have the
best machinist?

¢. How many of the crews would have at least 1 of the 10
best machinists?

d. If one of these crews is selected at random to work on a
particular night, what is the probability that the best
machinist will not work that night?

91

A factory uses three production lines to manufacture cans of a
certain type. The accompanying table gives percentages of
nonconforming cans, categorized by type of nonconformance,
for each of the three lines during a particular time period.

Line 1 Line 2 Line 3
Blemish 15 12 20
Crack 50 44 40
Pull-Tab Problem 21 28 24
Surface Defect 10 8 15
Other 4 8 2
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During this period, line 1 produced 500 nonconforming

cans, line 2 produced 400 such cans, and line 3 was respon-

sible for 600 nonconforming cans. Suppose that one of these

1500 cans is randomly selected.

a. What is the probability that the can was produced by line
1? That the reason for nonconformance is a crack?

b. If the selected can came from line 1, what is the proba-
bility that it had a blemish?

c. Given that the selected can had a surface defect, what is
the probability that it came from line 1?

An employee of the records office at a certain university
currently has ten forms on his desk awaiting processing. Six
of these are withdrawal petitions and the other four are
course substitution requests.

a. If he randomly selects six of these forms to give to a sub-
ordinate, what is the probability that only one of the two
types of forms remains on his desk?

b. Suppose he has time to process only four of these forms
before leaving for the day. If these four are randomly
selected one by one, what is the probability that each suc-
ceeding form is of a different type from its predecessor?

One satellite is scheduled to be launched from Cape
Canaveral in Florida, and another launching is scheduled for
Vandenberg Air Force Base in California. Let A denote the
event that the VVandenberg launch goes off on schedule, and
let B represent the event that the Cape Canaveral launch
goes off on schedule. If A and B are independent events with
P(A) > P(B), P(AUB) = .626, and P(A N B) = .144,
determine the values of P(A) and P(B).

A transmitter is sending a message by using a binary code,
namely, a sequence of 0’s and 1’s. Each transmitted bit (0 or
1) must pass through three relays to reach the receiver. At
each relay, the probability is .20 that the bit sent will be dif-
ferent from the bit received (a reversal). Assume that the
relays operate independently of one another.

Transmitter — Relay 1 — Relay 2 — Relay 3 — Receiver

a. Ifalissent from the transmitter, what is the probability
that a 1 is sent by all three relays?

b. If a 1 is sent from the transmitter, what is the probability
that a 1 is received by the receiver? [Hint: The eight
experimental outcomes can be displayed on a tree dia-
gram with three generations of branches, one generation
for each relay.]

c. Suppose 70% of all bits sent from the transmitter are 1s.
If a 1 is received by the receiver, what is the probability
that a 1 was sent?

Individual A has a circle of five close friends (B, C, D, E,
and F). A has heard a certain rumor from outside the circle
and has invited the five friends to a party to circulate the
rumor. To begin, A selects one of the five at random and
tells the rumor to the chosen individual. That individual
then selects at random one of the four remaining individu-
als and repeats the rumor. Continuing, a new individual is
selected from those not already having heard the rumor by
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the individual who has just heard it, until everyone has

been told.

a. What is the probability that the rumor is repeated in the
order B, C, D, E, and F?

b. What is the probability that F is the third person at the
party to be told the rumor?

c. What is the probability that F is the last person to hear
the rumor?

d. If at each stage the person who currently “has” the rumor
does not know who has already heard it and selects the
next recipient at random from all five possible individu-
als, what is the probability that F has still not heard the
rumor after it has been told ten times at the party?

According to the article “Optimization of Distribution
Parameters for Estimating Probability of Crack Detection”
(J. of Aircraft, 2009: 2090-2097), the following “Palmberg”
equation is commonly used to determine the probability
P,(c) of detecting a crack of size c in an aircraft structure:

(clc*)B

R = 14 o

where c* is the crack size that corresponds to a .5 detection

probability (and thus is an assessment of the quality of the

inspection process).

a. Verify that P(c*) = .5

b. What is P, (2c*) when g = 4?

c. Suppose an inspector inspects two different panels, one
with a crack size of c* and the other with a crack size of
2¢*. Again assuming 8 = 4 and also that the results of
the two inspections are independent of one another, what
is the probability that exactly one of the two cracks will
be detected?

d. What happens to P,(c) as B — *?

A chemical engineer is interested in determining whether a
certain trace impurity is present in a product. An experiment
has a probability of .80 of detecting the impurity if it is pres-
ent. The probability of not detecting the impurity if it is
absent is .90. The prior probabilities of the impurity being
present and being absent are .40 and .60, respectively. Three
separate experiments result in only two detections. What is
the posterior probability that the impurity is present?

Each contestant on a quiz show is asked to specify one of
six possible categories from which questions will be asked.
Suppose P(contestant requests category i) = % and succes-
sive contestants choose their categories independently of
one another. If there are three contestants on each show and
all three contestants on a particular show select different
categories, what is the probability that exactly one has
selected category 1?

Fasteners used in aircraft manufacturing are slightly
crimped so that they lock enough to avoid loosening during
vibration. Suppose that 95% of all fasteners pass an initial
inspection. Of the 5% that fail, 20% are so seriously defec-
tive that they must be scrapped. The remaining fasteners are
sent to a recrimping operation, where 40% cannot be
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salvaged and are discarded. The other 60% of these fasten-
ers are corrected by the recrimping process and subse-
quently pass inspection.

a. What is the probability that a randomly selected incom-
ing fastener will pass inspection either initially or after
recrimping?

b. Given that a fastener passed inspection, what is the
probability that it passed the initial inspection and did
not need recrimping?

One percent of all individuals in a certain population are

carriers of a particular disease. A diagnostic test for this

disease has a 90% detection rate for carriers and a 5%

detection rate for noncarriers. Suppose the test is applied

independently to two different blood samples from the

same randomly selected individual.

a. What is the probability that both tests yield the same
result?

b. If both tests are positive, what is the probability that the
selected individual is a carrier?

A system consists of two components. The probability that
the second component functions in a satisfactory manner
during its design life is .9, the probability that at least one of
the two components does so is .96, and the probability that
both components do so is .75. Given that the first component
functions in a satisfactory manner throughout its design life,
what is the probability that the second one does also?

A certain company sends 40% of its overnight mail parcels
via express mail service E;. Of these parcels, 2% arrive
after the guaranteed delivery time (denote the event “late
delivery” by L). If a record of an overnight mailing is ran-
domly selected from the company’s file, what is the prob-
ability that the parcel went via E; and was late?

Refer to Exercise 102. Suppose that 50% of the overnight

parcels are sent via express mail service E, and the remain-

ing 10% are sent via E,. Of those sent via E,, only 1% arrive

late, whereas 5% of the parcels handled by E; arrive late.

a. What is the probability that a randomly selected parcel
arrived late?

b. If a randomly selected parcel has arrived on time, what
is the probability that it was not sent via E,?

A company uses three different assembly lines—A,, A,,
and A,—to manufacture a particular component. Of those
manufactured by line A;, 5% need rework to remedy a
defect, whereas 8% of A,’s components need rework and
10% of A;’s need rework. Suppose that 50% of all compo-
nents are produced by line A;, 30% are produced by line
A,, and 20% come from line A,. If a randomly selected
component needs rework, what is the probability that it
came from line A;? From line A,? From line A;?

Disregarding the possibility of a February 29 birthday, sup-

pose a randomly selected individual is equally likely to

have been born on any one of the other 365 days.

a. If ten people are randomly selected, what is the proba-
bility that all have different birthdays? That at least two
have the same birthday?
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b. With k replacing ten in part (a), what is the smallest k
for which there is at least a 50-50 chance that two or
more people will have the same birthday?

c. If ten people are randomly selected, what is the proba-
bility that either at least two have the same birthday or
at least two have the same last three digits of their
Social Security numbers? [Note: The article “Methods
for Studying Coincidences” (F. Mosteller and
P. Diaconis, J. Amer. Stat. Assoc., 1989: 853-861) dis-
cusses problems of this type.]

One method used to distinguish between granitic (G) and
basaltic (B) rocks is to examine a portion of the infrared
spectrum of the sun’s energy reflected from the rock sur-
face. Let R, R,, and R, denote measured spectrum intensi-
ties at three different wavelengths; typically, for granite
R, < R, < R;, whereas for basalt R, < R, < R,. When
measurements are made remotely (using aircraft), various
orderings of the R;s may arise whether the rock is basalt or
granite. Flights over regions of known composition have
yielded the following information:

Granite Basalt
R, <R, <R, 60% 10%
R, <R; <R, 25% 20%
R; <R, <R, 15% 70%

Suppose that for a randomly selected rock in a certain

region, P(granite) = .25 and P(basalt) = .75.

a. Show that P(granite | R; < R, < R;) > P(basalt | R, <
R, < Rj). If measurements yielded R, <R, <R,
would you classify the rock as granite or basalt?

b. If measurements yielded R, < R; < R,, how would
you classify the rock? Answer the same question for
Ry <R, <R,

c. Using the classification rules indicated in parts (a) and
(b), when selecting a rock from this region, what is the
probability of an erroneous classification? [Hint: Either
G could be classified as B or B as G, and P(B) and P(G)
are known.]

d. If P(granite) = p rather than .25, are there values of p
(other than 1) for which one would always classify a
rock as granite?

A subject is allowed a sequence of glimpses to detect a tar-
get. Let G; = {the target is detected on the ith glimpse},
with p; = P(G;). Suppose the G;s are independent events,
and write an expression for the probability that the target
has been detected by the end of the nth glimpse. [Note:
This model is discussed in “Predicting Aircraft
Detectability,” Human Factors, 1979: 277-291.]

In a Little League baseball game, team A’s pitcher throws
a strike 50% of the time and a ball 50% of the time, suc-
cessive pitches are independent of one another, and the
pitcher never hits a batter. Knowing this, team B’s manager
has instructed the first batter not to swing at anything.
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Calculate the probability that

a. The batter walks on the fourth pitch

b. The batter walks on the sixth pitch (so two of the first
five must be strikes), using a counting argument or con-
structing a tree diagram

c. The batter walks

d. The first batter up scores while no one is out (assuming
that each batter pursues a no-swing strategy)

109. Four engineers, A, B, C, and D, have been scheduled for
job interviews at 10 A.m. on Friday, January 13, at Random
Sampling, Inc. The personnel manager has scheduled the
four for interview rooms 1, 2, 3, and 4, respectively.
However, the manager’s secretary does not know this, so
assigns them to the four rooms in a completely random
fashion (what else!). What is the probability that
a. All four end up in the correct rooms?

b. None of the four ends up in the correct room?

110. A particular airline has 10 a.m. flights from Chicago to
New York, Atlanta, and Los Angeles. Let A denote the
event that the New York flight is full and define events B
and C analogously for the other two flights. Suppose
P(A) = .6, P(B) = .5, P(C) = .4 and the three events are
independent. What is the probability that
a. All three flights are full? That at least one flight is not

full?
b. Only the New York flight is full? That exactly one of the
three flights is full?

111. A personnel manager is to interview four candidates for a
job. These are ranked 1, 2, 3, and 4 in order of preference
and will be interviewed in random order. However, at the
conclusion of each interview, the manager will know only
how the current candidate compares to those previously
interviewed. For example, the interview order 3, 4, 1, 2
generates no information after the first interview, shows
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that the second candidate is worse than the first, and that
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prize 2; (3) win prize 3; (4) win prizes 1, 2, and 3. One slip
will be randomly selected. Let A, = {win prize 1},
A, = {win prize 2}, and A; = {win prize 3}. Show that A,
and A, are independent, that A, and A, are independent,
and that A, and A, are also independent (this is pairwise
independence). However, show that P(A; N A, N A,) #
P(A)) - P(A,) - P(A;), so the three events are not mutually
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Show that if A;, A,, and A; are independent events, then
P(ALTA, M Ay) = P(A).
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3 Discrete Random Variables

and Probability
Distributions

I INTRODUCTION

Whether an experiment yields qualitative or quantitative outcomes, methods of
statistical analysis require that we focus on certain numerical aspects of the
data (such as a sample proportion x/n, mean X, or standard deviations). The
concept of a random variable allows us to pass from the experimental out-
comes themselves to a numerical function of the outcomes. There are two fun-
damentally different types of random variables—discrete random variables and
continuous random variables. In this chapter, we examine the basic properties
and discuss the most important examples of discrete variables. Chapter 4 fo-
cuses on continuous random variables.
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I 3.1 Random Variables

In any experiment, there are numerous characteristics that can be observed or mea-
sured, but in most cases an experimenter will focus on some specific aspect or
aspects of a sample. For example, in a study of commuting patterns in a metropoli-
tan area, each individual in a sample might be asked about commuting distance and
the number of people commuting in the same vehicle, but not about 1Q, income,
family size, and other such characteristics. Alternatively, a researcher may test a
sample of components and record only the number that have failed within 1000
hours, rather than record the individual failure times.

In general, each outcome of an experiment can be associated with a number by
specifying a rule of association (e.g., the number among the sample of ten compo-
nents that fail to last 1000 hours or the total weight of baggage for a sample of 25 air-
line passengers). Such a rule of association is called a random variable—a variable
because different numerical values are possible and random because the observed
value depends on which of the possible experimental outcomes results (Figure 3.1).

]

\-;7§%§§F??

Figure 3.1 A random variable

s

DEFINITION For a given sample space & of some experiment, a random variable (rv) is
any rule that associates a number with each outcome in &. In mathematical
language, a random variable is a function whose domain is the sample space
and whose range is the set of real numbers.

Random variables are customarily denoted by uppercase letters, such as X and
Y, near the end of our alphabet. In contrast to our previous use of a lowercase letter,
such as x, to denote a variable, we will now use lowercase letters to represent some
particular value of the corresponding random variable. The notation X(s) = x means
that x is the value associated with the outcome s by the rv X.

Example 3.1  When a student calls a university help desk for technical support, he/she will either
immediately be able to speak to someone (S, for success) or will be placed on hold
(F, for failure). With & = {S, F}, define an rv X by

X(S) =1 X(F)=0

The rv X indicates whether (1) or not (0) the student can immediately speak to
someone. [ |

The rv X in Example 3.1 was specified by explicitly listing each element of &
and the associated number. Such a listing is tedious if & contains more than a few
outcomes, but it can frequently be avoided.

Example 3.2  Consider the experiment in which a telephone number in a certain area code is dialed
using a random number dialer (such devices are used extensively by polling organi-
zations), and define an rv Y by
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Y = {1 if the selected number is unlisted
0 if the selected number is listed in the directory

For example, if 5282966 appears in the telephone directory, then Y(5282966) = 0,
whereas Y(7727350) = 1 tells us that the number 7727350 is unlisted. A word
description of this sort is more economical than a complete listing, so we will use
such a description whenever possible. [ |

In Examples 3.1 and 3.2, the only possible values of the random variable were
0 and 1. Such a random variable arises frequently enough to be given a special name,
after the individual who first studied it.

DEFINITION Any random variable whose only possible values are 0 and 1 is called a
Bernoulli random variable.

We will sometimes want to consider several different random variables from
the same sample space.

Example 3.3 Example 2.3 described an experiment in which the number of pumps in use at each
of two six-pump gas stations was determined. Define rv’s X, Y, and U by
X = the total number of pumps in use at the two stations

Y = the difference between the number of pumps in use at station 1 and the
number in use at station 2

U = the maximum of the numbers of pumps in use at the two stations

If this experiment is performed and s = (2, 3) results, then X((2,3)) = 2 + 3 = 5,50
we say that the observed value of X was x = 5. Similarly, the observed value of Y would
bey = 2 — 3 = —1, and the observed value of Uwouldbeu = max (2,3) = 3. ®

Each of the random variables of Examples 3.1-3.3 can assume only a finite
number of possible values. This need not be the case.

Example 3.4  Consider an experiment in which 9-volt batteries are tested until one with an acceptable
voltage (S) is obtained. The sample space is & = {S, FS, FFS, .. . }. Define an rv X by
X = the number of batteries tested before the experiment terminates
Then X(S) = 1, X(FS) = 2, X(FFS) = 3, ..., X(FFFFFFS) = 7, and so on. Any
positive integer is a possible value of X, so the set of possible values is infinite. M
Example 3.5 Suppose that in some random fashion, a location (latitude and longitude) in the con-
tinental United States is selected. Define an rv Y by
Y = the height above sea level at the selected location

For example, if the selected location were (39°50’N, 98°35'W), then we might have
Y((39°50'N, 98°35'W)) = 1748.26 ft. The largest possible value of Y is 14,494 (Mt.
Whitney), and the smallest possible value is —282 (Death Valley). The set of all
possible values of Y is the set of all numbers in the interval between —282 and
14,494—that is,

{y:yisanumber, —282 =y = 14,494}

and there are an infinite number of numbers in this interval. [ |
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Two Types of Random Variables

In Section 1.2, we distinguished between data resulting from observations on a count-
ing variable and data obtained by observing values of a measurement variable. A
slightly more formal distinction characterizes two different types of random variables.

DEFINITION A discrete random variable is an rv whose possible values either constitute a

finite set or else can be listed in an infinite sequence in which there is a first

element, a second element, and so on (“countably” infinite).

A random variable is continuous if both of the following apply:

1. Its set of possible values consists either of all numbers in a single interval
on the number line (possibly infinite in extent, e.g., from —oo to ) or all

numbers in a disjoint union of such intervals (e.g., [0, 10] U [20, 30]).

2. No possible value of the variable has positive probability, that is,
P(X = ¢) = 0 for any possible value c.

Although any interval on the number line contains an infinite number of numbers, it
can be shown that there is no way to create an infinite listing of all these values—
there are just too many of them. The second condition describing a continuous ran-
dom variable is perhaps counterintuitive, since it would seem to imply a total
probability of zero for all possible values. But we shall see in Chapter 4 that inter-
vals of values have positive probability; the probability of an interval will decrease
to zero as the width of the interval shrinks to zero.
Example 3.6  All random variables in Examples 3.1 —3.4 are discrete. As another example, suppose
we select married couples at random and do a blood test on each person until we find
a husband and wife who both have the same Rh factor. With X = the number of
blood tests to be performed, possible values of Xare D = {2, 4,6, 8, ... }. Since the
possible values have been listed in sequence, X is a discrete rv. |

To study basic properties of discrete rv’s, only the tools of discrete mathematics—
summation and differences—are required. The study of continuous variables requires
the continuous mathematics of the calculus—integrals and derivatives.

| EXERCISES  Section 3.1 (1-10)

1. A concrete beam may fail either by shear (S) or flexure (F). 5. If the sample space & is an infinite set, does this necessar-

Suppose that three failed beams are randomly selected and
the type of failure is determined for each one. Let
X = the number of beams among the three selected that
failed by shear. List each outcome in the sample space along
with the associated value of X.

ily imply that any rv X defined from & will have an infinite
set of possible values? If yes, say why. If no, give an
example.

. Starting at a fixed time, each car entering an intersection is

observed to see whether it turns left (L), right (R), or goes

2. Give three examples of Bernoulli rv’s (other than those in the straight ahead (A). The experiment terminates as soon as a car
text). is observed to turn left. Let X = the number of cars

3. Using the experiment in Example 3.3, define two more observed. What are possible X values? List five outcomes
random variables and list the possible values of each. and their associated X values.

4. LetX = the number of nonzero digits in a randomly selected . For each random variable defined here, describe the set of
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zip code. What are the possible values of X? Give three pos-
sible outcomes and their associated X values.

possible values for the variable, and state whether the vari-
able is discrete.
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a. X = the number of unbroken eggs in a randomly chosen
standard egg carton

b. Y = the number of students on a class list for a particular
course who are absent on the first day of classes

c. U = the number of times a duffer has to swing at a golf
ball before hitting it

d. X = the length of a randomly selected rattlesnake

e. Z = the amount of royalties earned from the sale of a first
edition of 10,000 textbooks

f. Y = the pH of a randomly chosen soil sample

g. X = the tension (psi) at which a randomly selected tennis
racket has been strung

h. X = the total number of coin tosses required for three
individuals to obtain a match (HHH or TTT)

Using an appropriate randomization device (such as a
tetrahedral die, one having four sides), Claudius first
moves to one of the four locations B,, B,, B;, B,. Once at
one of these locations, another randomization device is
used to decide whether Claudius next returns to 0 or next
visits one of the other two adjacent points. This process
then continues; after each move, another move to one of
the (new) adjacent points is determined by tossing an
appropriate die or coin.
a. Let X = the number of moves that Claudius makes
before first returning to 0. What are possible values of X?
Is X discrete or continuous?
b. If moves are allowed also along the diagonal paths con-
necting 0 to A, A,, A;, and A, respectively, answer the
questions in part (a).

8. Each time a component is tested, the trial is a success (S) or
failure (F). Suppose the component is tested repeatedly until 10. The number of pumps in use at both a six-pump station and
a success occurs on three consecutive trials. Let Y denote the a four-pump station will be determined. Give the possible
number of trials necessary to achieve this. List all outcomes values for each of the following random variables:
corresponding to the five smallest possible values of Y, and a. T = the total number of pumps in use
state which Y value is associated with each one. b. X = the difference between the numbers in use at stations
9. An individual named Claudius is located at the point 0 in the Land 2

accompanying diagram.

¢. U = the maximum number of pumps in use at either
station

d. Z = the number of stations having exactly two pumps
in use

3.2 Probability Distributions
for Discrete Random Variables

Probabilities assigned to various outcomes in & in turn determine probabilities asso-
ciated with the values of any particular rv X. The probability distribution of X says
how the total probability of 1 is distributed among (allocated to) the various possi-
ble X values. Suppose, for example, that a business has just purchased four laser
printers, and let X be the number among these that require service during the war-
ranty period. Possible X values are then 0, 1, 2, 3, and 4. The probability distribution
will tell us how the probability of 1 is subdivided among these five possible values—
how much probability is associated with the X value 0, how much is apportioned to
the X value 1, and so on. We will use the following notation for the probabilities in
the distribution:

p(0) = the probability of the X value 0 = P(X = 0)
p(1) = the probability of the X value 1 = P(X = 1)

and so on. In general, p(x) will denote the probability assigned to the value x.
Example 3.7 The Cal Poly Department of Statistics has a lab with six computers reserved for sta-
tistics majors. Let X denote the number of these computers that are in use at a par-
ticular time of day. Suppose that the probability distribution of X is as given in the

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.2. Probability Distributions for Discrete Random Variables 97

following table; the first row of the table lists the possible X values and the second
row gives the probability of each such value.

X | 0 1 2 3 4 5 6

p(x) | 05 10 15 25 20 .15 .10

We can now use elementary probability properties to calculate other probabilities of
interest. For example, the probability that at most 2 computers are in use is
PX=2)=PX=0orlor2) = p0) + p(1) + p2) = .05 + .10 + .15 = .30

Since the event at least 3 computers are in use is complementary to at most 2 com-
puters are in use,

PX=3)=1-PX=2)=1-.30=.70

which can, of course, also be obtained by adding together probabilities for the values,
3,4, 5, and 6. The probability that between 2 and 5 computers inclusive are in use is

PQ=X=5)=P(X=2340r5 =.15+ .25 + 20 + .15 = .75

whereas the probability that the number of computers in use is strictly between 2
and 5 is

P2 <X <5)=PX=30r4) =.25+ .20 = .45 ]

DEFINITION The probability distribution or probability mass function (pmf) of a discrete rv
is defined for every number x by p(x) = P(X = x) = P(all s € §: X(s) = x).

In words, for every possible value x of the random variable, the pmf specifies
the probability of observing that value when the experiment is performed. The con-
ditions p(x) = 0 and X, pessivie x P(X) = 1 are required of any pmf.

The pmf of X in the previous example was simply given in the problem
description. We now consider several examples in which various probability proper-
ties are exploited to obtain the desired distribution.

Example 3.8 Six lots of components are ready to be shipped by a certain supplier. The number of
defective components in each lot is as follows:

Lot
Number of defectives

o -
NN
o w
NN
N o1
o o

One of these lots is to be randomly selected for shipment to a particular customer.
Let X be the number of defectives in the selected lot. The three possible X values are
0, 1, and 2. Of the six equally likely simple events, three result in X = 0, one in
X =1, and the other two in X = 2. Then
. 3
p(0) = P(X = 0) = P(lot 1 or 3 or 6 is sent) = e .500
. 1
p(l) = P(X = 1) = P(lot4 is sent) = 6~ 167
. 2
p(2) = P(X = 2) = P(lot2 or 5is sent) = 6~ .333
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That is, a probability of .500 is distributed to the X value 0, a probability of .167 is placed
on the X value 1, and the remaining probability, .333, is associated with the X value 2.
The values of X along with their probabilities collectively specify the pmf. If this exper-
iment were repeated over and over again, in the long run X = 0 would occur one-half
of the time, X = 1 one-sixth of the time, and X = 2 one-third of the time. |

Example 3.9 Consider whether the next person buying a computer at a certain electronics store
buys a laptop or a desktop model. Let

X = {1 if the customer purchases a desktop computer
0 if the customer purchases a laptop computer

If 20% of all purchasers during that week select a desktop, the pmf for X is
p(0) = P(X = 0) = P(next customer purchases a laptop model) = .8
p(1) = P(X = 1) = P(next customer purchases a desktop model) = .2
p(x) = P(X=x) =0forx #0orl
An equivalent description is
8 ifx=20
p(x) = .2 ifx =1
0 ifx#0orl

Figure 3.2 is a picture of this pmf, called a line graph. X is, of course, a Bernoulli rv
and p(x) is a Bernoulli pmf.

p(x)
1
| X
0 1
Figure 3.2 The line graph for the pmf in Example 3.9 |

Example 3.10  Consider a group of five potential blood donors—a, b, ¢, d, and e—of whom only a and
b have type O+ blood. Five blood samples, one from each individual, will be typed in
random order until an O+ individual is identified. Let the rv Y = the number of typ-
ings necessary to identify an O+ individual. Then the pmf of Y is

p(1) = P(Y = 1) = P(aor b typed first) = % =4

p(2) = P(Y = 2) = P(c, d, or e first, and then a or b)
3 2
= P(c, d, or e first) - P(a or b next | c, d, or e first) = 52 =3

p(3) = P(Y = 3) = P(c, d, or e first and second, and then a or b)

3\(2\(2

BIO)

. 3\/2\/1

p(4) = P(Y = 4) = P(c, d, and e all done first) = <5><4>(3> =1

ply) =0 ify#123,4
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In tabular form, the pmf is
y | 1 2 3 4
) | 4 3 2

where any y value not listed receives zero probability. Figure 3.3 shows a line graph
of the pmf.

p(y)

Figure 3.3 The line graph for the pmf in Example 3.10 |

The name “probability mass function” is suggested by a model used in physics
for a system of “point masses.” In this model, masses are distributed at various loca-
tions x along a one-dimensional axis. Our pmf describes how the total probability
mass of 1 is distributed at various points along the axis of possible values of the ran-
dom variable (where and how much mass at each x).

Another useful pictorial representation of a pmf, called a probability histogram,
is similar to histograms discussed in Chapter 1. Above each y with p(y) > 0, construct
a rectangle centered at y. The height of each rectangle is proportional to p(y), and the
base is the same for all rectangles. When possible values are equally spaced, the base is
frequently chosen as the distance between successive y values (though it could be
smaller). Figure 3.4 shows two probability histograms.

@ (b)

Figure 3.4 Probability histograms: (a) Example 3.9; (b) Example 3.10

It is often helpful to think of a pmf as specifying a mathematical model for a discrete
population.

Example 3.11  Consider selecting at random a student who is among the 15,000 registered for the
current term at Mega University. Let X = the number of courses for which the
selected student is registered, and suppose that X has the following pmf:

X | 1 2 3 4 5 6 7

o9 | 01 03 13 25 39 A7 .02

One way to view this situation is to think of the population as consisting of 15,000 indi-
viduals, each having his or her own X value; the proportion with each X value is given
by p(x). An alternative viewpoint is to forget about the students and think of the popu-
lation itself as consisting of the X values: There are some 1s in the population, some
2s, ..., and finally some 7s. The population then consists of the numbers 1, 2, ..., 7 (so
is discrete), and p(x) gives a model for the distribution of population values. [ |
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Once we have such a population model, we will use it to compute values of
population characteristics (e.g., the mean w) and make inferences about such
characteristics.

A Parameter of a Probability Distribution

The pmf of the Bernoulli rv X in Example 3.9 was p(0) = .8 and p(1) = .2
because 20% of all purchasers selected a desktop computer. At another store, it
may be the case that p(0) = .9 and p(1) = .1. More generally, the pmf of any
Bernoulli rv can be expressed in the form p(1) = « and p(0) = 1 — «, where
0 < a < 1. Because the pmf depends on the particular value of «, we often write
p(x; «) rather than just p(x):

l1—a ifx=0
p(x; a) = a ifx =1 (3.2)
0 otherwise

Then each choice of « in Expression (3.1) yields a different pmf.

DEFINITION Suppose p(x) depends on a quantity that can be assigned any one of a number
of possible values, with each different value determining a different probabil-
ity distribution. Such a quantity is called a parameter of the distribution. The
collection of all probability distributions for different values of the parameter
is called a family of probability distributions.

The quantity « in Expression (3.1) is a parameter. Each different number
a between 0 and 1 determines a different member of the Bernoulli family of
distributions.

Example 3.12 Starting at a fixed time, we observe the gender of each newborn child at a certain
hospital until a boy (B) is born. Let p = P(B), assume that successive births are inde-
pendent, and define the rv X by x = number of births observed. Then

p(l) =P(X=1)=PB) =p
p2) = P(X = 2) = P(GB) = P(G)  P(B) = (1 — p)p
and
P(3) = P(X = 3) = P(GGB) = P(G) - P(G) - P(B) = (1 — p)%p

Continuing in this way, a general formula emerges:

L-p*p x=1,2,3,...
= 3.2
P() { 0 otherwise (32)

The parameter p can assume any value between 0 and 1. Expression (3.2) describes
the family of geometric distributions. In the gender example, p = .51 might be
appropriate, but if we were looking for the first child with Rh-positive blood, then
we might have p =.85. [ |

The Cumulative Distribution Function

For some fixed value x, we often wish to compute the probability that the observed
value of X will be at most x. For example, the pmf in Example 3.8 was
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500 X =0
167 x=1
PO = 1333 x=2

0 otherwise
The probability that X is at most 1 is then
P(X = 1) = p(0) + p(l) = .500 + .167 = .667
In this example, X = 1.5 ifand only if X = 1, so
P(X=15) = P(X = 1) = .667
Similarly,
PX=0)=PX=0)=.5 PX=.75) =25

And in fact for any x satisfying 0 = x < 1, P(X = x) = .5. The largest possible X
value is 2, so

PX=2)=1 P(X=37) =1 P(X=205) =1

and so on. Notice that P(X < 1) < P(X = 1) since the latter includes the probabil-
ity of the X value 1, whereas the former does not. More generally, when X is discrete
and x is a possible value of the variable, P(X < x) < P(X = x).

DEFINITION The cumulative distribution function (cdf) F(x) of a discrete rv variable X
with pmf p(x) is defined for every number x by

F(x) = PX=x) = X p(y) (3.3)
yiy=x
For any number x, F(x) is the probability that the observed value of X will be

at most x.

Example 3.13 A store carries flash drives with either 1 GB, 2 GB, 4 GB, 8 GB, or 16 GB of mem-
ory. The accompanying table gives the distribution of Y = the amount of memory in
a purchased drive:

y |1 2 4 8 16

p(y) | .05 .10 .35 40 .10

Let’s first determine F(y) for each of the five possible values of Y:

FQ) =P(Y=1) =P =1)=p() = .05

FQ)=P(Y=2)=P( =1lor2) =p) + p2) = .15

F4) =P =4) =P =1o0r20r4) = p(l) + p(2) + p(4) = .50

F(8) = P(Y =8) = p(1) + p(2) + p(4) + p(8) = .90

F(16) = P(Y = 16) = 1
Now for any other number y, F(y) will equal the value of F at the closest possible
value of Y to the left of y. For example,
F7)=P(Y=27)=PY=2)=F_2) = .15
F(7.999) = P(Y = 7.999) = P(Y = 4) = F(4) = .50
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If yis less than 1, F(y) = 0 [e.g. F(.58) = 0], and if y is at least 16, F(y) = 1 [e.g.
F(25) = 1]. The cdf is thus

0 y<l1
05 1=y<?2
15 2=y<4
F(y) =
M=1s50 sa=y<s
90 8=y<16
L1 6=y

A graph of this cdf is shown in Figure 3.5.

F(y)
1.0+ —_—
0.8
0.6
 —
0.4
0.2 +
—
—-

004 ———

T T T T T y

0 5 10 15 20

Figure 3.5 A graph of the cdf of Example 3.13 [ |

For X a discrete rv, the graph of F(x) will have a jump at every possible
value of X and will be flat between possible values. Such a graph is called a step
function.

Example 3.14  The pmf of X = the number of births had the form
(Example 3.12

continued 1—pp x=1,23,...
e P09 = {( FE)) i otherwise

For any positive integer X,

X x—1
F)= Zpy) = 2@ —pytp=p2(1—p) (3.4)
y =X y=1 y=0
To evaluate this sum, recall that the partial sum of a geometric series is
k k+1
l1-a
E ay = ———
y=0 l-a
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Using this in Equation (3.4), witha = 1 — pand k = x — 1, gives

1-(—py_
1-(—p)

Since F is constant in between positive integers,

FX) =p - 1— (1 —p)* xapositive integer

0 x <1
F(X):{l—(l—p)lxl x =1

where [x] is the largest integer = x (e.g., [2.7] = 2). Thus if p = .51 as in the birth
example, then the probability of having to examine at most five births to see the first
boy is F(5) = 1 — (.49)°> = 1 — .0282 = .9718, whereas F(10) = 1.0000. This
cdf is graphed in Figure 3.6.

(3.5)

F(x)
A
1.0 - - o
o—.—._
.—
.—
T T T T — N\ T X
0 1 2 3 4 5 50 51
Figure 3.6 A graph of F(x) for Example 3.14 |

In examples thus far, the cdf has been derived from the pmf. This process can
be reversed to obtain the pmf from the cdf whenever the latter function is available.
For example, consider again the rv of Example 3.7 (the number of computers being
used in a lab); possible X values are 0, 1, . .., 6. Then

P = P(X =3)
= [p(0) + p(D) + p2) + pB3)] — [p(0) + p(1) + p(2)]
PX=3) - PX=2)
= F3) - FQ
More generally, the probability that X falls in a specified interval is easily obtained
from the cdf. For example,
P2=X=4)=np@2) + p®) + p@)
= [p(0) + -~ + p(A)] — [p(0) + p(1)]
PX=4)-PX=1)
= F(4) - F(1)
Notice that P(2 = X = 4) # F(4) — F(2). This is because the X value 2 is included
in 2=X =4, so we do not want to subtract out its probability. However,

P2 <X =4)=F@4) — F(2) because X = 2 is not included in the interval
2<X=4.
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PROPOSITION

integers, then

For any two numbers a and b with a =< b,
Pla=X=b) = F(b) - F(a-)

where “a—" represents the largest possible X value that is strictly less than a.
In particular, if the only possible values are integers and if a and b are

P@=X=bh)

Taking a = byields P(X = a) = F(a) — F(a — 1) in this case.

P(X =aora + lor..
F(b) — F(a — 1)

. orbh)

The reason for subtracting F(a—) rather than F(a) is that we want to include
P(X = a); F(b) — F(a) gives P(a < X = b). This proposition will be used exten-
sively when computing binomial and Poisson probabilities in Sections 3.4 and 3.6.

Example 3.15

Let X = the number of days of sick leave taken by a randomly selected employee of

a large company during a particular year. If the maximum number of allowable sick
days per year is 14, possible values of X are 0, 1, . . ., 14. With F(0) = .58,
F(1) = .72, F(2) = .76, F(3) = .81, F(4) = .88, and F(5) = .94,

PQ=X=5)=PX=23,40r5) = F5) — F(1) = .22

and

P(X = 3) = F(3) — F(2) = .05

EXERCISES  Section 3.2 (11-28)

11.

12.

An automobile service facility specializing in engine

tune-ups knows that 45% of all tune-ups are done on four-

cylinder automobiles, 40% on six-cylinder automobiles,

and 15% on eight-cylinder automobiles. Let X = the

number of cylinders on the next car to be tuned.

a. What is the pmf of X?

b. Draw both a line graph and a probability histogram for
the pmf of part (a).

c. What is the probability that the next car tuned has at
least six cylinders? More than six cylinders?

Airlines sometimes overbook flights. Suppose that for a
plane with 50 seats, 55 passengers have tickets. Define the
random variable Y as the number of ticketed passengers who
actually show up for the flight. The probability mass func-
tion of Y appears in the accompanying table.

y |45 46 47 48 49 50 51 52 53 54 55

o) | 05 10 12 14 25 17 06 .05 03 02 .01

a. What is the probability that the flight will accommodate
all ticketed passengers who show up?

13.

b. What is the probability that not all ticketed passengers
who show up can be accommodated?

c. If you are the first person on the standby list (which
means you will be the first one to get on the plane if there
are any seats available after all ticketed passengers have
been accommodated), what is the probability that you
will be able to take the flight? What is this probability if
you are the third person on the standby list?

A mail-order computer business has six telephone lines. Let
X denote the number of lines in use at a specified time.
Suppose the pmf of X is as given in the accompanying table.

X | 0 1 2 3 4 5 6

| 10 15 20 25 20 .06 .04

p()

Calculate the probability of each of the following events.

a. {at most three lines are in use}

b. {fewer than three lines are in use}

. {at least three lines are in use}

. {between two and five lines, inclusive, are in use}

. {between two and four lines, inclusive, are not in use}
{at least four lines are not in use}

Sh® OO0
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14. A contractor is required by a county planning department to

15.

16.

17.

submit one, two, three, four, or five forms (depending on the
nature of the project) in applying for a building permit. Let
Y = the number of forms required of the next applicant.
The probability that y forms are required is known to be pro-
portional to y—that is, p(y) = ky fory = 1,...,5.

a. What is the value of k? [Hint: 23:1 p(y) = 1.]

b. What is the probability that at most three forms are
required?

¢. What is the probability that between two and four forms
(inclusive) are required?

d. Could p(y) = y¥/50 fory = 1,...,5 be the pmf of Y?

Many manufacturers have quality control programs that in-
clude inspection of incoming materials for defects. Sup-
pose a computer manufacturer receives computer boards in
lots of five. Two boards are selected from each lot for
inspection. We can represent possible outcomes of the selec-
tion process by pairs. For example, the pair (1, 2) represents
the selection of boards 1 and 2 for inspection.

a. List the ten different possible outcomes.

b. Suppose that boards 1 and 2 are the only defective
boards in a lot of five. Two boards are to be chosen at
random. Define X to be the number of defective boards
observed among those inspected. Find the probability
distribution of X.

c. Let F(x) denote the cdf of X. First determine F(0) =
P(X = 0), F(1), and F(2); then obtain F(x) for all other x.

Some parts of California are particularly earthquake-prone.

Suppose that in one metropolitan area, 25% of all home-

owners are insured against earthquake damage. Four home-

owners are to be selected at random; let X denote the
number among the four who have earthquake insurance.

a. Find the probability distribution of X. [Hint: Let S denote
a homeowner who has insurance and F one who does
not. Then one possible outcome is SFSS, with probability
(.25)(.75)(.25)(.25) and associated X value 3. There are
15 other outcomes.]

b. Draw the corresponding probability histogram.

. What is the most likely value for X?

d. What is the probability that at least two of the four
selected have earthquake insurance?

o

A new battery’s voltage may be acceptable (A) or unaccept-
able (U). A certain flashlight requires two batteries, so bat-
teries will be independently selected and tested until two
acceptable ones have been found. Suppose that 90% of all
batteries have acceptable voltages. Let Y denote the number
of batteries that must be tested.

a. What is p(2), that is, P(Y = 2)?

b. What is p(3)? [Hint: There are two different outcomes
that resultin Y = 3.]

c. To have Y = 5, what must be true of the fifth battery
selected? List the four outcomes for which Y = 5 and
then determine p(5).

d. Use the pattern in your answers for parts (a)—(c) to obtain
a general formula for p(y).

18.

19.

20.

21.

3.2. Probability Distributions for Discrete Random Variables

105

Two fair six-sided dice are tossed independently. Let

M = the maximum of the two tosses (so M(1,5) = 5,

M(3,3) = 3, etc.).

a. What is the pmf of M? [Hint: First determine p(1), then
p(2), and so on.]

b. Determine the cdf of M and graph it.

A library subscribes to two different weekly news maga-
zines, each of which is supposed to arrive in Wednesday’s
mail. In actuality, each one may arrive on Wednesday,
Thursday, Friday, or Saturday. Suppose the two arrive inde-
pendently of one another, and for each one P(Wed.) = .3,
P(Thurs.) = .4, P(Fri.) = .2, and P(Sat) = .1. Let
Y = the number of days beyond Wednesday that it takes for
both magazines to arrive (so possible Y values are 0, 1, 2, or
3). Compute the pmf of Y. [Hint: There are 16 possible
outcomes; Y(W,W) = 0, Y(F,Th) = 2, and so on.]

Three couples and two single individuals have been invited
to an investment seminar and have agreed to attend.
Suppose the probability that any particular couple or indi-
vidual arrives late is .4 (a couple will travel together in the
same vehicle, so either both people will be on time or else
both will arrive late). Assume that different couples and
individuals are on time or late independently of one
another. Let X = the number of people who arrive late for
the seminar.

a. Determine the probability mass function of X. [Hint:
label the three couples #1, #2, and #3 and the two indi-
viduals #4 and #5.]

b. Obtain the cumulative distribution function of X, and use
it to calculate P(2 = X = 6).

Suppose that you read through this year’s issues of the New
York Times and record each number that appears in a news
article—the income of a CEO, the number of cases of wine
produced by a winery, the total charitable contribution of a
politician during the previous tax year, the age of a
celebrity, and so on. Now focus on the leading digit of each
number, which could be 1, 2, .. ., 8, or 9. Your first thought
might be that the leading digit X of a randomly selected
number would be equally likely to be one of the nine pos-
sibilities (a discrete uniform distribution). However, much
empirical evidence as well as some theoretical arguments
suggest an alternative probability distribution called
Benford’s law:

+
p(X) = P(Lst digit is x) = |ogm(%) Xx=12...9

a. Without computing individual probabilities from this
formula, show that it specifies a legitimate pmf.

b. Now compute the individual probabilities and compare
to the corresponding discrete uniform distribution.

c. Obtain the cdf of X.

d. Using the cdf, what is the probability that the leading
digit is at most 3? At least 5?

[Note: Benford’s law is the basis for some auditing pro-

cedures used to detect fraud in financial reporting—for

example, by the Internal Revenue Service.]
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22.

23.

24.

25.

CHAPTER 3

Refer to Exercise 13, and calculate and graph the cdf F(x).
Then use it to calculate the probabilities of the events given
in parts (a)—(d) of that problem.

A consumer organization that evaluates new automobiles
customarily reports the number of major defects in each car
examined. Let X denote the number of major defects in a
randomly selected car of a certain type. The cdf of X is as
follows:

(0 x<0

06 0=x<1
19 1=x<2
39 2=x<3
67 3=x<4
92 4=x<5
97 5=x<6
1 6=x

F(x) =

Calculate the following probabilities directly from the cdf:
a. p(2), thatis, P(X = 2) b. P(X > 3)
c. PR =X=5) d. P2 <X <5)

An insurance company offers its policyholders a number of
different premium payment options. For a randomly
selected policyholder, let X = the number of months
between successive payments. The cdf of X is as follows:

0 x<1
30 1=x<3
40 3=x<4

E(x) =
) 45 4=x<6

60 6=x<12
1 12=x

a. What is the pmf of X?
b. Using just the cdf, compute P(3 = X = 6) and P(4 = X).

In Example 3.12, let Y = the number of girls born before
the experiment terminates. With p = P(B) and
1 — p = P(G), what is the pmf of Y? [Hint: First list the
possible values of Y, starting with the smallest, and proceed
until you see a general formula.]

Discrete Random Variables and Probability Distributions

26. Alvie Singer lives at 0 in the accompanying diagram and

27.

28.

has four friends who live at A, B, C, and D. One day Alvie
decides to go visiting, so he tosses a fair coin twice to
decide which of the four to visit. Once at a friend’s house,
he will either return home or else proceed to one of the
two adjacent houses (such as 0, A, or C when at B), with
each of the three possibilities having probability % In
this way, Alvie continues to visit friends until he
returns home.

D C

a. Let X = the number of times that Alvie visits a friend.
Derive the pmf of X.

b. Let Y = the number of straight-line segments that Alvie
traverses (including those leading to and from 0). What
is the pmf of Y?

c. Suppose that female friends live at A and C and male
friends at B and D. If Z = the number of visits to female
friends, what is the pmf of Z?

After all students have left the classroom, a statistics pro-
fessor notices that four copies of the text were left under
desks. At the beginning of the next lecture, the professor
distributes the four books in a completely random fashion
to each of the four students (1, 2, 3, and 4) who claim to
have left books. One possible outcome is that 1 receives 2’s
book, 2 receives 4’s book, 3 receives his or her own book,
and 4 receives 1’s book. This outcome can be abbreviated
as (2,4, 3,1).
a. List the other 23 possible outcomes.
b. Let X denote the number of students who receive their
own book. Determine the pmf of X.

Show that the cdf F(x) is a nondecreasing function; that is,
X, < X, implies that F(x;) = F(x,). Under what condition
will F(x,) = F(x,)?

I 3.3 Expected Values

Consider a university having 15,000 students and let X = the number of courses for
which a randomly selected student is registered. The pmf of X follows. Since
p(1) = .01, we know that (.01) - (15,000) = 1500f the students are registered for

one course, and similarly for the other x values.

X 1 2 3 4 5 6 7
p(x) 01 .03 13 25 39 17 .02
300

(3.6)

Number registered 150 450 1950 3750 5850 2550
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3.3. Expected Values 107

The average number of courses per student, or the average value of X in the
population, results from computing the total number of courses taken by all students
and dividing by the total number of students. Since each of 150 students is taking
one course, these 150 contribute 150 courses to the total. Similarly, 450 students
contribute 2(450) courses, and so on. The population average value of X is then

1(150) + 2(450) + 3(1950) + - - - + 7(300)
15,000

Since 150/15,000 = .01 = p(1), 450/15,000 = .03 = p(2), and so on, an alterna-
tive expression for (3.7) is

1-p1) +2-p2) + -+ +7-p(7) (3.8)

= 457 (3.7)

Expression (3.8) shows that to compute the population average value of X,
we need only the possible values of X along with their probabilities (proportions).
In particular, the population size is irrelevant as long as the pmf is given by (3.6).
The average or mean value of X is then a weighted average of the possible values
1, ..., 7, where the weights are the probabilities of those values.

The Expected Value of X

DEFINITION Let X be a discrete rv with set of possible values D and pmf p(x). The expected
value or mean value of X, denoted by E(X) or u, or just w, is

E(X) = pux = 2 x-pK)

xeD

Example 3.16  For the pmf of X = number of courses in (3.6),
mw=1-p1)+2-p2)+ - +7-p(7)

(1)(.01) + 2(.03) + --- + (7)(.02)

= .01+ .06 +.39 + 100 + 1.95 + 1.02 + .14 = 457

If we think of the population as consisting of the X values 1, 2, ..., 7, then u = 4.57
is the population mean. In the sequel, we will often refer to  as the population mean
rather than the mean of X in the population. Notice that u here is not 4, the ordinary
average of 1, . . ., 7, because the distribution puts more weight on 4, 5, and 6 than
on other X values. [ |

In Example 3.16, the expected value w was 4.57, which is not a possible value
of X. The word expected should be interpreted with caution because one would not
expect to see an X value of 4.57 when a single student is selected.

Example 3.17  Just after birth, each newborn child is rated on a scale called the Apgar scale. The
possible ratings are 0, 1, . . ., 10, with the child’s rating determined by color, mus-
cle tone, respiratory effort, heartbeat, and reflex irritability (the best possible score
is 10). Let X be the Apgar score of a randomly selected child born at a certain hos-
pital during the next year, and suppose that the pmf of X is

X |0 1 2 3 4 5 6 7 8 9 10

o) | 002 001 002 005 02 04 18 37 25 12 Ol
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108 CHAPTER 3 Discrete Random Variables and Probability Distributions

Then the mean value of X is

E(X) = u = 0(.002) + 1(.001) + 2(.002)
+ -+ 4 8(.25) + 9(.12) + 10(.01)
=715

Again, w is not a possible value of the variable X. Also, because the variable relates
to a future child, there is no concrete existing population to which w refers.
Instead, we think of the pmf as a model for a conceptual population consisting of
the values 0, 1, 2, . .., 10. The mean value of this conceptual population is then
pu = 7.15. [ |

Example 3.18 Let X = 1 if arandomly selected vehicle passes an emissions test and X = 0 other-
wise. Then X is a Bernoulli rv with pmf p(1) = p and p(0) = 1 — p, from which
E(X) =0-p0) +1-p(1) = 0(1 — p) + 1(p) = p. That is, the expected value of
Xis just the probability that X takes on the value 1. If we conceptualize a population
consisting of Os in proportion 1 — p and 1s in proportion p, then the population
average isu = p. [ |

Example 3.19 The general form for the pmf of X = number of children born up to and including
the first boy is

_fp@ —pt x=1,23,...
P = { 0 otherwise

From the definition,
oo o0 d
E(X) = 2x-p(x) = 2xp(l — p)<t= pE[ ~ - p)*} (3.9)
D x=1 x=1 p

If we interchange the order of taking the derivative and the summation, the sum
is that of a geometric series. After the sum is computed, the derivative is taken,
and the final result is E(X) = 1/p. If p is near 1, we expect to see a boy very soon,
whereas if p is near 0, we expect many births before the first boy. For p = .5,
E(X) = 2. |

There is another frequently used interpretation of w. Consider observing a first
value x, of X, then a second value x,, a third value x;, and so on. After doing this a
large number of times, calculate the sample average of the observed x;s. This aver-
age will typically be quite close to w. That is, u can be interpreted as the long-run
average observed value of X when the experiment is performed repeatedly. In
Example 3.17, the long-run average Apgar score is u = 7.15.

Example 3.20 Let X, the number of interviews a student has prior to getting a job, have pmf

) = {k/x2 x=1,273...
PRO= 0 otherwise

where k is chosen so that 37 ; (k/x?) = 1. (In a mathematics course on infinite
series, it is shown that 37, (1/x?) < o, which implies that such a k exists, but its
exact value need not concern us.) The expected value of X is

z k
n=EX = 2x* -
x=1 X

k>, % (3.10)
x=1
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The sum on the right of Equation (3.10) is the famous harmonic series of
mathematics and can be shown to equal . E(X) is not finite here because p(x) does
not decrease sufficiently fast as x increases; statisticians say that the probability dis-
tribution of X has “a heavy tail.” If a sequence of X values is chosen using this dis-
tribution, the sample average will not settle down to some finite number but will tend
to grow without bound.

Statisticians use the phrase “heavy tails” in connection with any distribution hav-
ing a large amount of probability far from w (so heavy tails do not require uw = ).
Such heavy tails make it difficult to make inferences about w. [ |

The Expected Value of a Function

Sometimes interest will focus on the expected value of some function h(X) rather
than on just E(X).

Example 3.21  Suppose a bookstore purchases ten copies of a book at $6.00 each to sell at $12.00
with the understanding that at the end of a 3-month period any unsold copies can be
redeemed for $2.00. If X = the number of copies sold, then net revenue = h(X) =
12X + 2(10 — X) — 60 = 10X — 40. What then is the expected net revenue? M

An easy way of computing the expected value of h(X) is suggested by the fol-
lowing example.

Example 3.22  The cost of a certain vehicle diagnostic test depends on the number of cylinders X in
the vehicle’s engine. Suppose the cost function is given by h(X) = 20 + 3X + .5X2
Since X is a random variable, so is Y = h(X). The pmf of X and derived pmf of Y are

as follows:

X |4 6 8 y |40 56 76
=

b | 5 3 2 o) | 5 3 2

With D* denoting possible values of Y,

E(Y)

E[h(X)] = gy - p(y)

(40)(5) + (56)(.3) + (76)(.2) (3.11)
= h(4) - (.5) + h(6) - (:3) + h(8) - (.2)

= 2h(x) - p(x)
D

According to Equation (3.11), it was not necessary to determine the pmf of Y to
obtain E(Y); instead, the desired expected value is a weighted average of the possi-
ble h(x) (rather than x) values. |

PROPOSITION If the rv X has a set of possible values D and pmf p(x), then the expected value
of any function h(X), denoted by E[h(X)] or wy,, is computed by

E[h(X)] = %h(x) " p()
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110 CHAPTER 3 Discrete Random Variables and Probability Distributions

That is, E[h(X)] is computed in the same way that E(X) itself is, except that
h(x) is substituted in place of x.

Example 3.23 A computer store has purchased three computers of a certain type at $500
apiece. It will sell them for $1000 apiece. The manufacturer has agreed to
repurchase any computers still unsold after a specified period at $200 apiece.
Let X denote the number of computers sold, and suppose that p(0) = .1,
p(1) = .2, p(2) = .3, and p(3) = .4. With h(X) denoting the profit associated
with selling X units, the given information implies that h(X) = revenue — cost =
1000X + 200(3 — X) — 1500 = 800X — 900. The expected profit is then

E[h(X)] = h(0) - p(0) + h(1) - p(1) + h(2) - p(2) + h(3) - p(3)
= (—900)(.1) + (—100)(.2) + (700)(.3) + (1500)(.4)
= $700 =

Rules of Expected Value

The h(X) function of interest is quite frequently a linear function aX + b. In this
case, E[h(X)] is easily computed from E(X).

PROPOSITION E(axX + b) = a-E(X) + b

(Or, using alternative notation, w.y,, = a+uyx + B

To paraphrase, the expected value of a linear function equals the linear func-
tion evaluated at the expected value E(X). Since h(X) in Example 3.23 is linear and
E(X) = 2, E[h(x)] = 800(2) — 900 = $700, as before.

Proof
E@X + b) = X(ax + b) - p(x) = aXx - p(x) + bXp(x)
’ = aEIZX) +b ’ u
Two special cases of the proposition yield two important rules of expected value.

1. For any constant a, E(aX) = a - E(X) (take b = 0).
2. For any constant b, E(X + b) = E(X) + b (take a = 1).

(3.12)

Multiplication of X by a constant a typically changes the unit of measurement,
for example, from inches to cm, where a = 2.54. Rule 1 says that the expected value
in the new units equals the expected value in the old units multiplied by the conver-
sion factor a. Similarly, if a constant b is added to each possible value of X, then the
expected value will be shifted by that same constant amount.

The Variance of X

The expected value of X describes where the probability distribution is centered.
Using the physical analogy of placing point mass p(x) at the value x on a one-
dimensional axis, if the axis were then supported by a fulcrum placed at u, there
would be no tendency for the axis to tilt. This is illustrated for two different distri-
butions in Figure 3.7.
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p() P()

B

@ (b)

Figure 3.7 Two different probability distributions with u = 4

Although both distributions pictured in Figure 3.7 have the same center u, the
distribution of Figure 3.7(b) has greater spread or variability or dispersion than does
that of Figure 3.7(a). We will use the variance of X to assess the amount of variabil-
ity in (the distribution of ) X, just as s> was used in Chapter 1 to measure variability
in a sample.

DEFINITION Let X have pmf p(x) and expected value w. Then the variance of X, denoted
by V(X) or %, or just a2, is

V(X) = %(X = w)? - p(x) = E[(X — w)7]

The standard deviation (SD) of X is

— 2
oy = Vo3

The quantity h(X) = (X — w)? is the squared deviation of X from its mean,
and o? is the expected squared deviation—i.e., the weighted average of squared
deviations, where the weights are probabilities from the distribution. If most of the
probability distribution is close to w, then o will be relatively small. However, if
there are x values far from w that have large p(x), then o will be quite large. Very
roughly, o can be interpreted as the size of a representative deviation from the mean
value . So if o = 10, then in a long sequence of observed X values, some will devi-
ate from p by more than 10 while others will be closer to the mean than that—a typ-
ical deviation from the mean will be something on the order of 10.

Example 3.24  Alibrary has an upper limit of 6 on the number of videos that can be checked out to
an individual at one time. Consider only those who check out videos, and let X
denote the number of videos checked out to a randomly selected individual. The pmf
of X is as follows:

X | 1 2 3 4 5 6

() | 30 25 15 .05 10 15

The expected value of X is easily seen to be u = 2.85. The variance of X is then

V(X) = 02 = %(x — 2.85)2 - p(x)

x=1
= (1 — 2.85)%.30) + (2 — 2.85)%(.25) + -+ + (6 — 2.85)%(.15) = 3.2275
The standard deviation of X is ¢ = V3.2275 = 1.800. [ |
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112 CHAPTER 3 Discrete Random Variables and Probability Distributions

When the pmf p(x) specifies a mathematical model for the distribution of pop-
ulation values, both o2 and o measure the spread of values in the population; o is
the population variance, and o is the population standard deviation.

A Shortcut Formula for o2

The number of arithmetic operations necessary to compute o2 can be reduced by
using an alternative formula.

PROPOSITION V(X) = o2 = [Exz . p(x)} — w2 = E(X?) — [EX)]2
D

In using this formula, E(X?) is computed first without any subtraction; then E(X) is
computed, squared, and subtracted (once) from E(X?).

Example 3.25  The pmf of the number X of videos checked out was given as p(1) = .30, p(2) = .25,
(Example 3.24 p(3) = .15, p(4) = .05, p(5) = .10, and p(6) = .15, from which . = 2.85 and
continued)

6
E(X?) = Sx2-p(x) = (19)(.30) + (22)(.25) + - - - + (69)(.15) = 11.35
x=1
Thus 0> = 11.35 — (2.85)? = 3.2275 as obtained previously from the definition. B

Proof of the Shortcut Formula Expand (x — w)? in the definition of o2 to
obtain x> — 2ux + w?, and then carry 3 through to each of the three terms:

o2

%XZ “p(x) — 2u- ED:X “p(x) + MZ%P(X)
E(X?) — 2u-p + u? = E(X?) — p? L

Rules of Variance

The variance of h(X) is the expected value of the squared difference between h(X)
and its expected value:

VIh(X)] = of = %{h(X) — E[h(X)]}? - p(x) (3.13)
When h(X) = aX + b, a linear function,
h(x) — E[h(X)] = ax + b — (au + b) = a(x — w)
Substituting this into (3.13) gives a simple relationship between V[h(X)] and V(X):

PROPOSITION V@X + b) = 0%, =a%- 0% and oy, = |a] oy
In particular,

ox = |al coy oy = 0y (3.14)
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The absolute value is necessary because a might be negative, yet a standard
deviation cannot be. Usually multiplication by a corresponds to a change in the unit
of measurement (e.g., kg to Ib or dollars to euros). According to the first relation in
(3.14), the sd in the new unit is the original sd multiplied by the conversion factor.
The second relation says that adding or subtracting a constant does not impact vari-
ability; it just rigidly shifts the distribution to the right or left.

Example 3.26

In the computer sales scenario of Example 3.23, E(X) = 2 and

E(X?) = (0)(1) + ()(2) + (D*(3) + (3)*(4) =5

soV(X) = 5 — (2)? = 1. The profit function h(X) = 800X — 900 then has variance
(800)? - V(X) = (640,000)(1) = 640,000and standard deviation 800. [ |

| EXERCISES  Section 3.3 (29-45)

29.

30.

31.

32.

The pmf of the amount of memory X (GB) in a purchased
flash drive was given in Example 3.13 as

X | 1 2 4 8 16

p(x) | .05 10 .35 40 .10
Compute the following:

a. E(X)

b. V(X) directly from the definition

¢. The standard deviation of X

d. V(X) using the shortcut formula

An individual who has automobile insurance from a certain
company is randomly selected. Let Y be the number of mov-
ing violations for which the individual was cited during the
last 3 years. The pmf of Y is

y | o 1 2 3

p(y) | .60 .25 10 .05

a. Compute E(Y).

b. Suppose an individual with Y violations incurs a sur-
charge of $100Y2. Calculate the expected amount of the
surcharge.

Refer to Exercise 12 and calculate V(Y) and o-,. Then deter-
mine the probability that Y is within 1 standard deviation of
its mean value.

An appliance dealer sells three different models of upright
freezers having 13.5, 15.9, and 19.1 cubic feet of storage
space, respectively. Let X = the amount of storage space
purchased by the next customer to buy a freezer. Suppose
that X has pmf

15.9

X | 135 19.1

p(x) | 2 5 3

33.

34.

35.

a. Compute E(X), E(X?), and V(X).

b. If the price of a freezer having capacity X cubic feet is
25X — 8.5, what is the expected price paid by the next
customer to buy a freezer?

¢. What is the variance of the price 25X — 8.5 paid by the
next customer?

d. Suppose that although the rated capacity of a freezer is
X, the actual capacity is h(X) = X — .01X?2. What is the
expected actual capacity of the freezer purchased by the
next customer?

Let X be a Bernoulli rv with pmf as in Example 3.18.
a. Compute E(X?).

b. Show that V(X) = p(1 — p).

c. Compute E(X™).

Suppose that the number of plants of a particular type found

in a rectangular sampling region (called a quadrat by ecolo-
gists) in a certain geographic area is an rv X with pmf

%) = {c/x3 x=123...
P 0  otherwise

Is E(X) finite? Justify your answer (this is another distribu-
tion that statisticians would call heavy-tailed).

A small market orders copies of a certain magazine for its
magazine rack each week. Let X = demand for the maga-
zine, with pmf

X | 1 2 3 4 5 6
‘ i 2 3 4 3 2
p(x) 15 15 15 15 15 15

Suppose the store owner actually pays $2.00 for each copy of
the magazine and the price to customers is $4.00. If magazines
left at the end of the week have no salvage value, is it better to
order three or four copies of the magazine? [Hint: For both
three and four copies ordered, express net revenue as a func-
tion of demand X, and then compute the expected revenue.]
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36.

37.

38.

39.

CHAPTER 3

Let X be the damage incurred (in $) in a certain type of acci-
dent during a given year. Possible X values are 0, 1000,
5000, and 10000, with probabilities .8, .1, .08, and .02,
respectively. A particular company offers a $500 deductible
policy. If the company wishes its expected profit to be $100,
what premium amount should it charge?

The n candidates for a job have been ranked 1, 2, 3, ..., n.
Let X = the rank of a randomly selected candidate, so that
X has pmf

) = {lln x=1,273,...,n
P 0 otherwise

(this is called the discrete uniform distribution). Compute
E(X) and V(X) using the shortcut formula. [Hint: The sum
of the first n positive integers is n(n + 1)/2, whereas the
sum of their squares is n(n + 1)(2n + 1)/6.]

Let X = the outcome when a fair die is rolled once. If
before the die is rolled you are offered either (1/3.5) dollars
or h(X) = 1/X dollars, would you accept the guaranteed
amount or would you gamble? [Note: It is not generally true
that 1/E(X) = E(1/X).]

A chemical supply company currently has in stock 100 Ib of
a certain chemical, which it sells to customers in 5-lb
batches. Let X = the number of batches ordered by a ran-
domly chosen customer, and suppose that X has pmf

X | 1 2 3 4

p(x) | 2 4 3 1

Compute E(X) and V(X). Then compute the expected num-
ber of pounds left after the next customer’s order is shipped
and the variance of the number of pounds left. [Hint: The
number of pounds left is a linear function of X.]

Discrete Random Variables and Probability Distributions

40.

41.

42.

43.

44,

45.

a. Draw a line graph of the pmf of X in Exercise 35. Then
determine the pmf of —X and draw its line graph. From
these two pictures, what can you say about V(X) and
V(—X)?

b. Use the proposition involving V(aX + b) to establish a
general relationship between V(X) and V(—X).

Use the definition in Expression (3.13) to prove that
V(@X + b) = a?-¢% [Hint: With h(X) =aX + b,
E[h(X)] = aw + b where u = E(X).]

Suppose E(X) = 5 and E[X(X — 1)] = 27.5. What is

a. E(X?)? [Hint: E[X(X — 1)] = E[X? — X] =
E(X?) — E(X)]?

b. V(X)?

c. The general relationship among the quantities E(X),
E[X(X — 1)], and V(X)?

Write a general rule for E(X — c¢) where ¢ is a constant.
What happens when you let ¢ = pu, the expected value of X?

A result called Chebyshev’s inequality states that for any
probability distribution of an rv X and any number k that is
at least 1, P(|X — u| = ko) = 1/K% In words, the proba-
bility that the value of X lies at least k standard deviations
from its mean is at most 1/k?.

a. What is the value of the upper bound for k = 2? k = 3?
k =42k = 5%k = 10?

b. Compute w and o for the distribution of Exercise 13.
Then evaluate P(|X — w| = ko) for the values of k
given in part (a). What does this suggest about the upper
bound relative to the corresponding probability?

c. Let X have possible values —1, 0, and 1, with probabilities
1—18, g, and %, respectively. What is P(| X — | = 30),
and how does it compare to the corresponding bound?

d. Give a distribution for which P(| X — w| = 50) = .04.

If a = X = b, show that a =< E(X) = b.

I 3.4 The Binomial Probability Distribution

There are many experiments that conform either exactly or approximately to the fol-
lowing list of requirements:

1. The experiment consists of a sequence of n smaller experiments called trials,
where n is fixed in advance of the experiment.

2. Each trial can result in one of the same two possible outcomes (dichotomous
trials), which we generically denote by success (S) and failure (F).

3. The trials are independent, so that the outcome on any particular trial does not
influence the outcome on any other trial.

4. The probability of success P(S) is constant from trial to trial; we denote this

probability by p.

DEFINITION
experiment.

An experiment for which Conditions 1-4 are satisfied is called a binomial
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Example 3.27 The same coin is tossed successively and independently n times. We arbitrarily use
S to denote the outcome H (heads) and F to denote the outcome T (tails). Then this
experiment satisfies Conditions 1-4. Tossing a thumbtack n times, with
S = pointup and F = point down, also results in a binomial experiment. |

Many experiments involve a sequence of independent trials for which there are
more than two possible outcomes on any one trial. A binomial experiment can then
be created by dividing the possible outcomes into two groups.

Example 3.28 The color of pea seeds is determined by a single genetic locus. If the two alleles
at this locus are AA or Aa (the genotype), then the pea will be yellow (the pheno-
type), and if the allele is aa, the pea will be green. Suppose we pair off 20 Aa seeds
and cross the two seeds in each of the ten pairs to obtain ten new genotypes. Call
each new genotype a success S if it is aa and a failure otherwise. Then with this
identification of S and F, the experiment is binomial with n = 10 and

p = P(aa genotype). If each member of the pair is equally likely to contribute a or
1yl _ 1
A thenp = P(a) - P@) = (3)(2) =3 o

Example 3.29  Suppose a certain city has 50 licensed restaurants, of which 15 currently have at least
one serious health code violation and the other 35 have no serious violations. There
are five inspectors, each of whom will inspect one restaurant during the coming
week. The name of each restaurant is written on a different slip of paper, and after
the slips are thoroughly mixed, each inspector in turn draws one of the slips without
replacement. Label the ith trial as a success if the ith restaurant selected
(i=1,...,5) has no serious violations. Then

. . 35
P(S on first trial) = 00" .70

and

P(S on second trial) = P(SS) + P(FS)

P(second S | first S)P(first S)

+ P(second S | first F)P(first F)

_34 35+35.15:35<34 15>:35
49 50 49 50 50 50

+— =.
49 49 0

Similarly, it can be shown that P(S on ith trial) = .70 for i = 3, 4, 5. However,

31
P(S on fifth trial | SSSS) = = = .67

whereas

35
P(S on fifth trial | FFFF) = i .76

The experiment is not binomial because the trials are not independent. In gen-
eral, if sampling is without replacement, the experiment will not yield independent
trials. If each slip had been replaced after being drawn, then trials would have been
independent, but this might have resulted in the same restaurant being inspected by
more than one inspector. |
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Example 3.30 A certain state has 500,000 licensed drivers, of whom 400,000 are insured. A sam-
ple of 10 drivers is chosen without replacement. The ith trial is labeled S if the ith
driver chosen is insured. Although this situation would seem identical to that of
Example 3.29, the important difference is that the size of the population being sam-
pled is very large relative to the sample size. In this case

399,999
499,999

P(Son2|Sonl) = = .80000

and

399,991
499,991

P(Son10|Son first9) = = .799996 = .80000

These calculations suggest that although the trials are not exactly independent, the
conditional probabilities differ so slightly from one another that for practical
purposes the trials can be regarded as independent with constant P(S) = .8. Thus, to
a very good approximation, the experiment is binomial withn = 10andp = .8. &

We will use the following rule of thumb in deciding whether a “without-
replacement” experiment can be treated as a binomial experiment.

RULE Consider sampling without replacement from a dichotomous population of
size N. If the sample size (number of trials) n is at most 5% of the population
size, the experiment can be analyzed as though it were exactly a binomial
experiment.

By “analyzed,” we mean that probabilities based on the binomial experiment assump-
tions will be quite close to the actual “without-replacement” probabilities, which are
typically more difficult to calculate. In Example 3.29, n/N = 5/50 = .1 > .05, so the
binomial experiment is not a good approximation, but in Example 3.30,
n/N = 10/500,000 < .05.

The Binomial Random Variable and Distribution

In most binomial experiments, it is the total number of S’s, rather than knowledge of
exactly which trials yielded S’s, that is of interest.

DEFINITION The binomial random variable X associated with a binomial experiment
consisting of n trials is defined as

X = the number of S’s among the n trials

Suppose, for example, that n = 3. Then there are eight possible outcomes for the
experiment:

SSS SSF SFS SFF FSS FSF FFS FFF

From the definition of X, X(SSF) = 2, X(SFF) = 1, and so on. Possible values for
X'in an n-trial experiment are x = 0, 1, 2, ..., n. We will often write X ~ Bin(n, p)
to indicate that X is a binomial rv based on n trials with success probability p.
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NOTATION Because the pmf of a binomial rv X depends on the two parameters n and p,
we denote the pmf by b(x; n, p).

Consider first the case n = 4 for which each outcome, its probability, and cor-
responding x value are listed in Table 3.1. For example,

P(SSFS) = P(S) - P(S) - P(F) - P(S) (independent trials)
=p-p-(1—p)-p (constantP(S))
=p>-(1-p

Table 3.1 Outcomes and Probabilities for a Binomial Experiment with Four Trials

Outcome X Probability QOutcome X Probability
$SSS 4 p* FSSS 3 p3(1 — p)
SSSF 3 p3(L — p) FSSF 2 p?(1 — p)?
SSFS 3 p3(1 — p) FSFS 2 p*(1 — p)?
SSFF 2 pA(1 — p)? FSFF 1 p(l — p)°
SFSS 3 p(L — p) FFSS 2 p*(1 — p)?
SFSF 2 P21 — p)? FFSF 1 p(l — p)®
SFFS 2 p?(1 — p)? FFFS 1 p(l — p)®
SFFF 1 p(l — p)® FFFF 0 1 - p)*

In this special case, we wish b(x; 4, p) forx = 0, 1, 2, 3, and 4. For b(3; 4, p),
let’s identify which of the 16 outcomes yield an x value of 3 and sum the probabili-
ties associated with each such outcome:

b(3; 4, p) = P(FSSS) + P(SFSS) + P(SSFS) + P(SSSF) = 4p%(1 — p)

There are four outcomes with X = 3 and each has probability p3(1 — p) (the order
of S’s and F’s is not important, but only the number of S’s), so

b(3: 4, p) = {number of outcomes} ) {probability of any particular}
P with X = 3 outcome with X = 3

Similarly, b(2; 4, p) = 6p?(1 — p)?, which is also the product of the number of out-
comes with X = 2 and the probability of any such outcome.
In general,

number of sequences of _ ) probability of any
length n consisting of x S’s particular such sequence

mem={

Since the ordering of S’s and F’s is not important, the second factor in the previous
equation is pX(1 — p)"~* (e.g., the first x trials resulting in S and the lastn — x result-
ing in F). The first factor is the number of ways of choosing x of the n trials to be
S’s—that is, the number of combinations of size x that can be constructed from n dis-
tinct objects (trials here).

(DWﬂ—m“szaLa””n

0 otherwise

THEOREM b(x; n, p) =
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Example 3.31 Each of six randomly selected cola drinkers is given a glass containing cola S and one
containing cola F. The glasses are identical in appearance except for a code on the bot-
tom to identify the cola. Suppose there is actually no tendency among cola drinkers
to prefer one cola to the other. Then p = P(a selected individual prefers S) = .5, so
with X = the number among the six who prefer S, X ~ Bin(6,.5).

Thus

P(X = 3) = b(3; 6, 5) = <g>(.5)3(.5)3 — 20(.5)% = .313

The probability that at least three prefer S is
6

PGB =X = Sbx6 .5 = 3 <§>(.5)X(.5)6x — 656
x=3

x=3

and the probability that at most one prefers S is

PX=1)= éb(x; 6,.5) = .109 [ |
x=0

Using Binomial Tables*

Even for a relatively small value of n, the computation of binomial probabilities can
be tedious. Appendix Table A.1 tabulates the cdf F(x) = P(X =x) for
n = 5, 10, 15, 20, 25 in combination with selected values of p. Various other proba-
bilities can then be calculated using the proposition on cdf’s from Section 3.2. A
table entry of 0 signifies only that the probability is 0 to three significant digits since
all table entries are actually positive.

NOTATION For X ~ Bin(n, p), the cdf will be denoted by

B(x;n,p) = PX=x) = EX‘,b(Y;n,p) x=20,1,...,n
y=0

Example 3.32  Suppose that 20% of all copies of a particular textbook fail a certain binding strength
test. Let X denote the number among 15 randomly selected copies that fail the test.
Then X has a binomial distribution withn = 15and p = .2.

1. The probability that at most 8 fail the test is

P(X < 8) = %b(y; 15, .2) = B(8; 15, .2)
y=0

which is the entry in the x = 8 row and the p = .2 column of the n = 15 bino-
mial table. From Appendix Table A.1, the probability is B(8; 15, .2) = .999.

2. The probability that exactly 8 fail is
P(X =8) = P(X=8) — P(X=7) = B(8; 15, .2) — B(7; 15, .2)

which is the difference between two consecutive entries in the p = .2 column.
The result is .999 — .996 = .003.

* Statistical software packages such as Minitab and R will provide the pmf or cdf almost instantaneously
upon request for any value of p and n ranging from 2 up into the millions. There is also an R command
for calculating the probability that X lies in some interval.
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3. The probability that at least 8 fail is
PX=8)=1-PX=7)=1-B(7;15,.2)

_1_(entryinx=7 )
B row of p = .2 column

1—.996 = .004

4. Finally, the probability that between 4 and 7, inclusive, fail is
PU=X=7)=PXX=4,560r7)=PX=7)—P(X=3)
= B(7; 15, .2) — B(3; 15, .2) = .996 — .648 = .348

Notice that this latter probability is the difference between entries in the x = 7 and
x = 3rows, notthex = 7 and x = 4 rows. |

Example 3.33  An electronics manufacturer claims that at most 10% of its power supply units
need service during the warranty period. To investigate this claim, technicians at
a testing laboratory purchase 20 units and subject each one to accelerated testing
to simulate use during the warranty period. Let p denote the probability that a
power supply unit needs repair during the period (the proportion of all such units
that need repair). The laboratory technicians must decide whether the data result-
ing from the experiment supports the claim that p = .10. Let X denote the num-
ber among the 20 sampled that need repair, so X ~ Bin(20, p). Consider the
decision rule:

Reject the claim that p = .10 in favor of the conclusion thatp > .10ifx = 5
(where x is the observed value of X), and consider the claim plausible if x =< 4.

The probability that the claim is rejected when p = .10 (an incorrect conclusion) is
P(X = 5whenp = .10) = 1 — B(4; 20,.1) = 1 — .957 = .043

The probability that the claim is not rejected when p = .20 (a different type of
incorrect conclusion) is

P(X = 4whenp = .2) = B(4; 20, .2) = .630

The first probability is rather small, but the second is intolerably large. When
p = .20, so that the manufacturer has grossly understated the percentage of units
that need service, and the stated decision rule is used, 63% of all samples will result
in the manufacturer’s claim being judged plausible!

One might think that the probability of this second type of erroneous conclu-
sion could be made smaller by changing the cutoff value 5 in the decision rule to
something else. However, although replacing 5 by a smaller number would yield a
probability smaller than .630, the other probability would then increase. The only
way to make both “error probabilities” small is to base the decision rule on an
experiment involving many more units. |

The Mean and Variance of X

For n = 1, the binomial distribution becomes the Bernoulli distribution. From
Example 3.18, the mean value of a Bernoulli variable is uw = p, so the expected
number of S’s on any single trial is p. Since a binomial experiment consists of n trials,
intuition suggests that for X ~ Bin(n, p), E(X) = np, the product of the number of
trials and the probability of success on a single trial. The expression for V(X) is not
so intuitive.
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PROPOSITION If X~ Bin(n,p), then E(X)=np, V(X)=np( —p) =npg, and
oy = Vnpq (whereq = 1 — p).
Thus, calculating the mean and variance of a binomial rv does not necessitate eval-
uating summations. The proof of the result for E(X) is sketched in Exercise 64.
Example 3.34 1 75% of all purchases at a certain store are made with a credit card and X is the number

among ten randomly selected purchases made with a credit card, then X ~ Bin(10, .75).
Thus E(X) = np = (10)(.75) = 7.5, V(X) = npgq = 10(.75)(.25) = 1.875, and
o = V1.875 = 1.37. Again, even though X can take on only integer values, E(X) need
not be an integer. If we perform a large number of independent binomial experiments,
eachwithn = 10trialsand p = .75, then the average number of S’s per experiment will

be close to 7.5.

The probability that X is within 1 standard deviation of its mean value is
P(75 - 137 =X =75+ 1.37) = P(6.13 = X = 8.87) = P(X = 7 or 8) = .532.

| EXERCISES Section 3.4 (46-67)

46.

Compute the following binomial probabilities directly from
the formula for b(x; n, p):

a. b(3; 8, .35)

b. b(5; 8, .6)

c. PB=X=5)whenn =7andp = .6

d. P(L=X)whenn =9andp = .1

50.

b. Among six randomly selected goblets, what is the prob-
ability that at least two are seconds?

c. If goblets are examined one by one, what is the proba-
bility that at most five must be selected to find four that
are not seconds?

A particular telephone number is used to receive both voice

47. Use Appendix Table A.1 to obtain the following calls and fax messages. Suppose that 25% of the incoming
probabilities: calls involve fax messages, and consider a sample of 25
. B(4; 15, .3) incoming calls. What is the probability that
. b(4; 15, .3) a. At most 6 of the calls involve a fax message?
b(6; 15, .7) b. Exactly 6 of the calls involve a fax message?

48.

49.

. P(2 = X = 4) when X ~ Bin(15, .3)
P(2 = X) when X ~ Bin(15, .3)
P(X = 1) when X ~ Bin(15, .7)

g. P(2 < X < 6) when X ~ Bin(15, .3)

When circuit boards used in the manufacture of compact

disc players are tested, the long-run percentage of defectives

is 5%. Let X = the number of defective boards in a random

sample of size n = 25, so X ~ Bin(25, .05).

a. Determine P(X = 2).

b. Determine P(X = 5).

c. Determine P(1 = X = 4).

d. What is the probability that none of the 25 boards is
defective?

e. Calculate the expected value and standard deviation of X.

-0 Q00 CT®

A company that produces fine crystal knows from experi-

ence that 10% of its goblets have cosmetic flaws and must

be classified as “seconds.”

a. Among six randomly selected goblets, how likely is it
that only one is a second?

51.

52.

c. At least 6 of the calls involve a fax message?
d. More than 6 of the calls involve a fax message?

Refer to the previous exercise.

a. What is the expected number of calls among the 25 that
involve a fax message?

b. What is the standard deviation of the number among the
25 calls that involve a fax message?

c. What is the probability that the number of calls among
the 25 that involve a fax transmission exceeds the
expected number by more than 2 standard deviations?

Suppose that 30% of all students who have to buy a text for

a particular course want a new copy (the successes!),

whereas the other 70% want a used copy. Consider ran-

domly selecting 25 purchasers.

a. What are the mean value and standard deviation of the
number who want a new copy of the book?

b. What is the probability that the number who want new
copies is more than two standard deviations away from
the mean value?
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54.

55.

56.

¢. The bookstore has 15 new copies and 15 used copies in
stock. If 25 people come in one by one to purchase this
text, what is the probability that all 25 will get the type
of book they want from current stock? [Hint: Let
X = the number who want a new copy. For what values
of X will all 25 get what they want?]

d. Suppose that new copies cost $100 and used copies cost
$70. Assume the bookstore currently has 50 new copies
and 50 used copies. What is the expected value of total rev-
enue from the sale of the next 25 copies purchased? Be sure
to indicate what rule of expected value you are using.
[Hint: Let h(X) = the revenue when X of the 25 pur-
chasers want new copies. Express this as a linear function.]

Exercise 30 (Section 3.3) gave the pmf of Y, the number of

traffic citations for a randomly selected individual insured

by a particular company. What is the probability that among

15 randomly chosen such individuals

a. At least 10 have no citations?

b. Fewer than half have at least one citation?

c. The number that have at least one citation is between 5
and 10, inclusive?*

A particular type of tennis racket comes in a midsize version
and an oversize version. Sixty percent of all customers at a
certain store want the oversize version.

a. Among ten randomly selected customers who want this
type of racket, what is the probability that at least six
want the oversize version?

b. Among ten randomly selected customers, what is the
probability that the number who want the oversize version
is within 1 standard deviation of the mean value?

c. The store currently has seven rackets of each version.
What is the probability that all of the next ten customers
who want this racket can get the version they want from
current stock?

Twenty percent of all telephones of a certain type are sub-
mitted for service while under warranty. Of these, 60% can
be repaired, whereas the other 40% must be replaced with
new units. If a company purchases ten of these telephones,
what is the probability that exactly two will end up being
replaced under warranty?

The College Board reports that 2% of the 2 million high

school students who take the SAT each year receive special

accommodations because of documented disabilities (Los

Angeles Times, July 16, 2002). Consider a random sample

of 25 students who have recently taken the test.

a. What is the probability that exactly 1 received a special
accommodation?

b. What is the probability that at least 1 received a special
accommodation?

¢. What is the probability that at least 2 received a special
accommodation?

d. What is the probability that the number among the 25
who received a special accommodation is within 2

* “Between a and b, inclusive” is equivalent to (a < X < b).

57.

58.

59.
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standard deviations of the number you would expect to
be accommodated?

e. Suppose that a student who does not receive a special
accommodation is allowed 3 hours for the exam,
whereas an accommodated student is allowed 4.5 hours.
What would you expect the average time allowed the 25
selected students to be?

Suppose that 90% of all batteries from a certain supplier
have acceptable voltages. A certain type of flashlight
requires two type-D batteries, and the flashlight will work
only if both its batteries have acceptable voltages. Among
ten randomly selected flashlights, what is the probability
that at least nine will work? What assumptions did you
make in the course of answering the question posed?

A very large batch of components has arrived at a distribu-

tor. The batch can be characterized as acceptable only if the

proportion of defective components is at most .10. The
distributor decides to randomly select 10 components and to
accept the batch only if the number of defective components

in the sample is at most 2.

a. What is the probability that the batch will be accepted
when the actual proportion of defectives is .01? .05? .10?
.20? .25?

b. Let p denote the actual proportion of defectives in the
batch. A graph of P(batch is accepted) as a function of p,
with p on the horizontal axis and P(batch is accepted) on
the vertical axis, is called the operating characteristic
curve for the acceptance sampling plan. Use the results
of part (a) to sketch this curve for0 = p = 1.

c. Repeat parts (a) and (b) with “1” replacing “2” in the
acceptance sampling plan.

d. Repeat parts (a) and (b) with “15” replacing “10” in the
acceptance sampling plan.

e. Which of the three sampling plans, that of part (a), (c), or
(d), appears most satisfactory, and why?

An ordinance requiring that a smoke detector be installed in
all previously constructed houses has been in effect in a par-
ticular city for 1 year. The fire department is concerned that
many houses remain without detectors. Let p = the true
proportion of such houses having detectors, and suppose
that a random sample of 25 homes is inspected. If the
sample strongly indicates that fewer than 80% of all houses
have a detector, the fire department will campaign for a
mandatory inspection program. Because of the costliness of
the program, the department prefers not to call for such
inspections unless sample evidence strongly argues for their
necessity. Let X denote the number of homes with detectors
among the 25 sampled. Consider rejecting the claim that
p=.8ifx =15
a. What is the probability that the claim is rejected when
the actual value of p is .8?
b. What is the probability of not rejecting the claim when
p = .7?Whenp = .6?
c¢. How do the “error probabilities” of parts (a) and (b) change
if the value 15 in the decision rule is replaced by 14?
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A toll bridge charges $1.00 for passenger cars and $2.50
for other vehicles. Suppose that during daytime hours, 60%
of all vehicles are passenger cars. If 25 vehicles cross the
bridge during a particular daytime period, what is the
resulting expected toll revenue? [Hint: Let X = the number
of passenger cars; then the toll revenue h(X) is a linear
function of X.]

A student who is trying to write a paper for a course has a
choice of two topics, A and B. If topic A is chosen, the
student will order two books through interlibrary loan,
whereas if topic B is chosen, the student will order four
books. The student believes that a good paper necessitates
receiving and using at least half the books ordered for either
topic chosen. If the probability that a book ordered through
interlibrary loan actually arrives in time is .9 and books
arrive independently of one another, which topic should the
student choose to maximize the probability of writing a
good paper? What if the arrival probability is only .5 instead
of .9?

a. For fixed n, are there values of p (0 = p = 1) for which
V(X) = 0? Explain why this is so.

b. For what value of p is V(X) maximized? [Hint: Either
graph V(X) as a function of p or else take a derivative.]

a. Show that b(x; n, 1 — p) = b(n — x; n, p).

b. Show that B(x;n,1 —p)=1—B(nh — x — 1;n,p).
[Hint: At most x S’s is equivalent to at least (n — X) F’s.]

c. What do parts (a) and (b) imply about the necessity of
including values of p greater than .5 in Appendix Table A.1?

Show that E(X) = np when X is a binomial random
variable. [Hint: First express E(X) as a sum with lower limit
x = 1. Then factor out np, lety = x — 1 so that the sum is
fromy = 0toy = n — 1, and show that the sum equals 1.]

Discrete Random Variables and Probability Distributions

65.

66.

67.

Customers at a gas station pay with a credit card (A), debit

card (B), or cash (C). Assume that successive customers

make independent choices, with P(A) = .5, P(B) = .2, and

P(C) = 3.

a. Among the next 100 customers, what are the mean and
variance of the number who pay with a debit card?
Explain your reasoning.

b. Answer part (a) for the number among the 100 who don’t
pay with cash.

An airport limousine can accommodate up to four passengers
on any one trip. The company will accept a maximum of six
reservations for a trip, and a passenger must have a reserva-
tion. From previous records, 20% of all those making
reservations do not appear for the trip. Answer the following
questions, assuming independence wherever appropriate.

a. If six reservations are made, what is the probability that
at least one individual with a reservation cannot be
accommodated on the trip?

b. If six reservations are made, what is the expected num-
ber of available places when the limousine departs?

c. Suppose the probability distribution of the number of
reservations made is given in the accompanying table.

Number of reservations | 3 4 5 6

Probability | 1 2 3 4
Let X denote the number of passengers on a randomly
selected trip. Obtain the probability mass function of X.

Refer to Chebyshev’s inequality given in Exercise 44.
Calculate P(|X — u| = ko) for k = 2 and k = 3 when
X ~ Bin(20, .5), and compare to the corresponding upper
bound. Repeat for X ~ Bin(20, .75).

3.5 Hypergeometric and Negative
Binomial Distributions

The hypergeometric and negative binomial distributions are both related to the
binomial distribution. The binomial distribution is the approximate probability
model for sampling without replacement from a finite dichotomous (S-F) popula-
tion provided the sample size n is small relative to the population size N; the
hypergeometric distribution is the exact probability model for the number of S’s in
the sample. The binomial rv X is the number of S’s when the number n of trials is
fixed, whereas the negative binomial distribution arises from fixing the number of
S’s desired and letting the number of trials be random.

The Hypergeometric Distribution

The assumptions leading to the hypergeometric distribution are as follows:

1. The population or set to be sampled consists of N individuals, objects, or
elements (a finite population).
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2. Each individual can be characterized as a success (S) or a failure (F), and there
are M successes in the population.

3. A sample of n individuals is selected without replacement in such a way that
each subset of size n is equally likely to be chosen.

The random variable of interest is X = the number of S’s in the sample. The
probability distribution of X depends on the parameters n, M, and N, so we wish to
obtain P(X = x) = h(x; n, M, N).

Example 3.35 During a particular period a university’s information technology office received 20
service orders for problems with printers, of which 8 were laser printers and 12 were
inkjet models. A sample of 5 of these service orders is to be selected for inclusion in
a customer satisfaction survey. Suppose that the 5 are selected in a completely
random fashion, so that any particular subset of size 5 has the same chance of being
selected as does any other subset. What then is the probability that exactly
x(x =0,1,2,3,4,or5) of the selected service orders were for inkjet printers?

Here, the population size is N = 20, the sample size isn = 5, and the number
of S’s (inkjet = S) and F’s in the population are M =12 and N — M = 8,
respectively. Consider the value x = 2. Because all outcomes (each consisting of 5
particular orders) are equally likely,

number of outcomes having X = 2
number of possible outcomes

P(X = 2) = h(2; 5,12, 20) =

The number of possible outcomes in the experiment is the number of ways of
selecting 5 from the 20 objects without regard to order—that is, (). To count the
number of outcomes having X = 2, note that there are () ways of selecting 2 of
the inkjet orders, and for each such way there are (g) ways of selecting the 3 laser
orders to fill out the sample. The product rule from Chapter 2 then gives (%)(3) as
the number of outcomes with X = 2, so

_ (122)@) 77
h(2; 5, 12, 20) = = = 238 ]
(20) 323
5

In general, if the sample size n is smaller than the number of successes in the pop-
ulation (M), then the largest possible X value is n. However, if M < n (e.g., a sample
size of 25 and only 15 successes in the population), then X can be at most M. Similarly,
whenever the number of population failures (N — M) exceeds the sample size, the
smallest possible X value is 0 (since all sampled individuals might then be failures).
However, if N — M << n, the smallest possible X valueisnh — (N — M). Thus, the pos-
sible values of X satisfy the restriction max (0, n — (N — M)) = x = min (n, M). An
argument parallel to that of the previous example gives the pmf of X.

PROPOSITION If X is the number of S’s in a completely random sample of size n drawn from
a population consisting of M S’s and (N — M) F’s, then the probability distri-
bution of X, called the hypergeometric distribution, is given by

GO =)
P(X =x) = h(x;n, M, N) = T (3.15)
(v)

for x, an integer, satisfying max (0,n — N + M) =< x =< min (n, M).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



124 CHAPTER 3 Discrete Random Variables and Probability Distributions

In Example 3.35, n=5 M =12, and N =20, so h(x; 5 12, 20) for
x = 0,1, 2,3, 4,5 can be obtained by substituting these numbers into Equation (3.15).

Example 3.36 Five individuals from an animal population thought to be near extinction in a cer-
tain region have been caught, tagged, and released to mix into the population.
After they have had an opportunity to mix, a random sample of 10 of these animals
is selected. Let X = the number of tagged animals in the second sample. If there
are actually 25 animals of this type in the region, what is the probability that
@) X =2?(b) X =2?
The parameter values are n = 10, M = 5 (5 tagged animals in the population),

and N = 25, so
(10 )
X/\10 — x
h(x; 10,5,25) = — x=0,1,2,3,4,5

25
(3)
For part (a),
5\/20
2/\ 8
P(X = 2) = h(2; 10, 5, 25) = . = .385
10
For part (b),

PX=2)=PX=0,1,0r2) = éh(x; 10, 5, 25)

x=0

= .057 + .257 + .385 = .699 |

Various statistical software packages will easily generate hypergeometric
probabilities (tabulation is cumbersome because of the three parameters).

As in the binomial case, there are simple expressions for E(X) and V(X) for
hypergeometric rv’s.

PROPOSITION The mean and variance of the hypergeometric rv X having pmf h(x; n, M, N) are

M N —n M M
E(X)=n-ﬁ V(X):(N—l)nN(l_N)

The ratio M/N is the proportion of S’s in the population. If we replace M/N by
p in E(X) and V(X), we get

E(X) = np
V0o = (1 =1) o - )

(3.16)

Expression (3.16) shows that the means of the binomial and hypergeometric rv’s are
equal, whereas the variances of the two rv’s differ by the factor (N — n)/(N — 1),
often called the finite population correction factor. This factor is less than 1, so the
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hypergeometric variable has smaller variance than does the binomial rv. The
correction factor can be written (1 — n/N)/(1 — 1/N), which is approximately 1
when n is small relative to N.

Example 3.37 In the animal-tagging example, n = 10, M = 5,and N = 25,s0p = % = .2and

(Example 3.36 B -
continued) E(X) = 10(.2) = 2

V(X) = 5(10)(.2)(.8) — (625)(1.6) = 1

If the sampling was carried out with replacement, V(X) = 1.6.

Suppose the population size N is not actually known, so the value x is observed
and we wish to estimate N. It is reasonable to equate the observed sample proportion
of S’s, x/n, with the population proportion, M/N, giving the estimate

~ M-n
N=—
X

If M = 100, n = 40, and x = 16, then N = 250. |

Our general rule of thumb in Section 3.4 stated that if sampling was without
replacement but n/N was at most .05, then the binomial distribution could be used to
compute approximate probabilities involving the number of S’s in the sample. A
more precise statement is as follows: Let the population size, N, and number of pop-
ulation S’s, M, get large with the ratio M/N approaching p. Then h(x; n, M, N)
approaches b(x; n, p); so for n/N small, the two are approximately equal provided
that p is not too near either 0 or 1. This is the rationale for the rule.

The Negative Binomial Distribution

The negative binomial rv and distribution are based on an experiment satisfying the
following conditions:

1. The experiment consists of a sequence of independent trials.
2. Each trial can result in either a success (S) or a failure (F).

3. The probability of success is constant from trial to trial, so P(S on trial i) = p
fori=1,23,....

4. The experiment continues (trials are performed) until a total of r successes have
been observed, where r is a specified positive integer.

The random variable of interest is X = the number of failures that precede the rth
success; X is called a negative binomial random variable because, in contrast
to the binomial rv, the number of successes is fixed and the number of trials is
random.

Possible values of X are 0, 1, 2, . . . . Let nb(x; r, p) denote the pmf of X.
Consider nb(7; 3, p) = P(X = 7), the probability that exactly 7 F's occur before the
34 S. In order for this to happen, the 10™ trial must be an S and there must be exactly
2 S's among the first 9 trials. Thus

wasan = {(5)-wa-orf o= (3) v

Generalizing this line of reasoning gives the following formula for the negative bino-
mial pmf.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



126 CHAPTER 3 Discrete Random Variables and Probability Distributions

PROPOSITION The pmf of the negative binomial rv X with parameters r = number of S’s and
p = P(S)is

+ —
nb(x;r,p)z(X ril 1>pf(1—p)X x=0,12...

Example 3.38 A pediatrician wishes to recruit 5 couples, each of whom is expecting their first
child, to participate in a new natural childbirth regimen. Let p = P(a randomly
selected couple agrees to participate). If p = .2, what is the probability that 15 cou-
ples must be asked before 5 are found who agree to participate? That is, with
S = {agrees to participate}, what is the probability that 10 F’s occur before the fifth
S? Substituting r = 5, p = .2, and x = 10 into nb(x; r, p) gives

nb(10; 5, .2) = (144)(.2)5(.8)10 = 034

The probability that at most 10 F’s are observed (at most 15 couples are asked) is

P(X = 10) = Snb(x:5,.2) = (.2)5120<X Z 4
x=0

x=0

)(.S)X = 164 =

In some sources, the negative binomial rv is taken to be the number of trials
X + r rather than the number of failures.
In the special case r = 1, the pmf is

nb(x;1,p) = A —pp x=0,1,2,... (3.17)

In Example 3.12, we derived the pmf for the number of trials necessary to obtain the
first S, and the pmf there is similar to Expression (3.17). Both X = number of F’s
and Y = number of trials ( = 1 + X) are referred to in the literature as geometric
random variables, and the pmf in Expression (3.17) is called the geometric
distribution.

The expected number of trials until the first S was shown in Example 3.19 to be
1/p, so that the expected number of F’s until the first S is (1/p) — 1 = (1 — p)/p.
Intuitively, we would expecttoseer - (1 — p)/pF’s before the rth S, and this is indeed
E(X). There is also a simple formula for V(X).

PROPOSITION If X'is a negative binomial rv with pmf nb(x; r, p), then

E(X) = r(l p_ P) V(X) = rd p; p)

Finally, by expanding the binomial coefficient in front of p"(1 — p)* and doing some
cancellation, it can be seen that nb(x; r, p) is well defined even when r is not an inte-
ger. This generalized negative binomial distribution has been found to fit observed
data quite well in a wide variety of applications.
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| EXERCISES Section 3.5 (68-78)

68.

69.

70.

71.

An electronics store has received a shipment of 20 table
radios that have connections for an iPod or iPhone. Twelve
of these have two slots (so they can accommodate both
devices), and the other eight have a single slot. Suppose that
six of the 20 radios are randomly selected to be stored under
a shelf where the radios are displayed, and the remaining
ones are placed in a storeroom. Let X = the number among
the radios stored under the display shelf that have two slots.
a. What kind of a distribution does X have (name and val-
ues of all parameters)?
b. Compute P(X = 2), P(X = 2), and P(X = 2).
c. Calculate the mean value and standard deviation of X.

Each of 12 refrigerators of a certain type has been returned

to a distributor because of an audible, high-pitched, oscil-

lating noise when the refrigerators are running. Suppose that

7 of these refrigerators have a defective compressor and the

other 5 have less serious problems. If the refrigerators

are examined in random order, let X be the number among
the first 6 examined that have a defective compressor.

Compute the following:

a. P(X = 5)

b. P(X = 4)

¢. The probability that X exceeds its mean value by more
than 1 standard deviation.

d. Consider a large shipment of 400 refrigerators, of which
40 have defective compressors. If X is the number among
15 randomly selected refrigerators that have defective
compressors, describe a less tedious way to calculate (at
least approximately) P(X = 5) than to use the hypergeo-
metric pmf.

An instructor who taught two sections of engineering statis-

tics last term, the first with 20 students and the second with

30, decided to assign a term project. After all projects had

been turned in, the instructor randomly ordered them before

grading. Consider the first 15 graded projects.

a. What is the probability that exactly 10 of these are from
the second section?

b. What is the probability that at least 10 of these are from
the second section?

¢. What is the probability that at least 10 of these are from
the same section?

d. What are the mean value and standard deviation of the
number among these 15 that are from the second sec-
tion?

e. What are the mean value and standard deviation of the
number of projects not among these first 15 that are from
the second section?

A geologist has collected 10 specimens of basaltic rock and
10 specimens of granite. The geologist instructs a labora-
tory assistant to randomly select 15 of the specimens for
analysis.

72.

73.

74.

75.

a. What is the pmf of the number of granite specimens
selected for analysis?

b. What is the probability that all specimens of one of the
two types of rock are selected for analysis?

c. What is the probability that the number of granite speci-
mens selected for analysis is within 1 standard deviation
of its mean value?

A personnel director interviewing 11 senior engineers for

four job openings has scheduled six interviews for the first

day and five for the second day of interviewing. Assume

that the candidates are interviewed in random order.

a. What is the probability that x of the top four candidates
are interviewed on the first day?

b. How many of the top four candidates can be expected to
be interviewed on the first day?

Twenty pairs of individuals playing in a bridge tournament

have been seeded 1, . . ., 20. In the first part of the tourna-

ment, the 20 are randomly divided into 10 east-west pairs

and 10 north-south pairs.

a. What is the probability that x of the top 10 pairs end up
playing east-west?

b. What is the probability that all of the top five pairs end
up playing the same direction?

c. If there are 2n pairs, what is the pmf of X = the number
among the top n pairs who end up playing east-west?
What are E(X) and V(X)?

A second-stage smog alert has been called in a certain area

of Los Angeles County in which there are 50 industrial

firms. An inspector will visit 10 randomly selected firms to
check for violations of regulations.

a. If 15 of the firms are actually violating at least one
regulation, what is the pmf of the number of firms visited
by the inspector that are in violation of at least one
regulation?

b. If there are 500 firms in the area, of which 150 are in vio-
lation, approximate the pmf of part (a) by a simpler pmf.

¢. For X = the number among the 10 visited that are in vio-
lation, compute E(X) and V(X) both for the exact pmf and
the approximating pmf in part (b).

Suppose that p = P(male birth) = .5. A couple wishes to

have exactly two female children in their family. They will

have children until this condition is fulfilled.

a. What is the probability that the family has x male
children?

b. What is the probability that the family has four children?

c. What is the probability that the family has at most four
children?

d. How many male children would you expect this family
to have? How many children would you expect this
family to have?
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76.

T7.
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A family decides to have children until it has three children
of the same gender. Assuming P(B) = P(G) = .5, what is
the pmf of X = the number of children in the family?

Three brothers and their wives decide to have children until

Discrete Random Variables and Probability Distributions

length Y is the number of consecutive time intervals in
which the water supply remains below a critical value y, (a
deficit), preceded by and followed by periods in which the
supply exceeds this critical value (a surplus). The cited

paper proposes a geometric distribution with p = .409 for

this random variable.

a. What is the probability that a drought lasts exactly 3
intervals? At most 3 intervals?

b. What is the probability that the length of a drought
exceeds its mean value by at least one standard
deviation?

each family has two female children. What is the pmf of
X = the total number of male children born to the brothers?
What is E(X), and how does it compare to the expected
number of male children born to each brother?

78. According to the article “Characterizing the Severity and
Risk of Drought in the Poudre River, Colorado” (J. of Water
Res. Planning and Mgmnt., 2005: 383-393), the drought

I 3.6 The Poisson Probability Distribution

The binomial, hypergeometric, and negative binomial distributions were all derived
by starting with an experiment consisting of trials or draws and applying the laws of
probability to various outcomes of the experiment. There is no simple experiment on
which the Poisson distribution is based, though we will shortly describe how it can
be obtained by certain limiting operations.

DEFINITION A discrete random variable X is said to have a Poisson distribution with

parameter w (u > 0) if the pmf of X is

- X

M-M
x!

px; w) = x=20123...

It is no accident that we are using the symbol w for the Poisson parameter; we shall
see shortly that w is in fact the expected value of X. The letter e in the pmf represents
the base of the natural logarithm system; its numerical value is approximately
2.71828. In contrast to the binomial and hypergeometric distributions, the Poisson
distribution spreads probability over all non-negative integers, an infinite number of
possibilities.

It is not obvious by inspection that p(x; w) specifies a legitimate pmf, let alone
that this distribution is useful. First of all, p(x; u) > 0 for every possible x value
because of the requirement that u > 0. The fact that > p(x; w) = 1 is a consequence
of the Maclaurin series expansion of e* (check your calculus book for this result):

2 3 o X
e"“=1+,u.+ 'u;_i_’i_{_... — Eﬂ

21 3l o x! (3.18)

If the two extreme terms in (3.18) are multiplied by e # and then this quantity is
moved inside the summation on the far right, the result is

o) e_I'L'M
1:
XE::O x!

X

Example 3.39 Let X denote the number of creatures of a particular type captured in a trap during a
given time period. Suppose that X has a Poisson distribution with u = 4.5, so on

average traps will contain 4.5 creatures. [The article “Dispersal Dynamics of the
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3.6. The Poisson Probability Distribution 129

Bivalve Gemma Gemma in a Patchy Environment” (Ecological Monographs, 1995:
1-20) suggests this model; the bivalve Gemma gemma is a small clam.] The proba-
bility that a trap contains exactly five creatures is

e~45(4.5)°
P(X =5) = % = .1708
The probability that a trap has at most five creatures is
>, e745(4.5) 4.5)? 4.5)°
PX=5) = Ze)(#=e*4-51+4.5+ (2|) + - % = .7029 =
x=0 H H H

The Poisson Distribution as a Limit

The rationale for using the Poisson distribution in many situations is provided by the
following proposition.

PROPOSITION Suppose that in the binomial pmf b(x; n, p), we letn — « and p — 0 in such
a way that np approaches a value p > 0. Then b(x; n, p) — p(X; w).

According to this proposition, in any binomial experiment in which n is large
and p is small, b(x; n, p) = p(x; w), where . = np. As a rule of thumb, this approx-
imation can safely be applied if n > 50 and np < 5.

Example 3.40 If a publisher of nontechnical books takes great pains to ensure that its books are free
of typographical errors, so that the probability of any given page containing at least
one such error is .005 and errors are independent from page to page, what is the
probability that one of its 400-page novels will contain exactly one page with errors?
At most three pages with errors?

With S denoting a page containing at least one error and F an error-free page,
the number X of pages containing at least one error is a binomial rv with n = 400
and p = .005, so np = 2. We wish

e2(2)t

P(X = 1) = b(1;400,.005) ~ p(L; 2) = =

= .270671

The binomial value is b(1; 400, .005) = .270669, so the approximation is very good.
Similarly,

3 3 X
PX=23)~= Xp(x,2) = Ze?—
x=0 x=0 x!

135335 + .270671 + .270671 + .180447
= .8571

and this again is quite close to the binomial value P(X = 3) = .8576. |

Table 3.2 shows the Poisson distribution for w = 3 along with three bino-
mial distributions with np = 3, and Figure 3.8 (from S-Plus) plots the Poisson
along with the first two binomial distributions. The approximation is of limited
use for n = 30, but of course the accuracy is better for n = 100 and much better
for n = 300.
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Table 3.2 Comparing the Poisson and Three Binomial Distributions

X n=30,p=.1 n = 100, p = .03 n = 300,p = .01 Poisson, u = 3

0 0.042391 0.047553 0.049041 0.049787
1 0.141304 0.147070 0.148609 0.149361
2 0.227656 0.225153 0.224414 0.224042
3 0.236088 0.227474 0.225170 0.224042
4 0.177066 0.170606 0.168877 0.168031
5 0.102305 0.101308 0.100985 0.100819
6 0.047363 0.049610 0.050153 0.050409
7 0.018043 0.020604 0.021277 0.021604
8 0.005764 0.007408 0.007871 0.008102
9 0.001565 0.002342 0.002580 0.002701
10 0.000365 0.000659 0.000758 0.000810
PXx) Bin, n=30 (0); Bin, n=100 (x); Poisson (|)

.25 ,

.20

.15 X

10 - f

054

[
0—— T T T T - ? X
0 2 4 6 8 10

Figure 3.8 Comparing a Poisson and two binomial distributions

Appendix Table A.2 exhibits the cdf F(x; u) for w = .1,.2,...,1,2,...,
10, 15, and 20. For example, if u = 2, then P(X = 3) = F(3;2) = .857 as in
Example 3.40, whereas P(X = 3) = F(3; 2) — F(2; 2) = .180. Alternatively, many
statistical computer packages will generate p(x; n) and F(x; w) upon request.

The Mean and Variance of X

Since b(x; n, p) — p(x; w) as n — o, p — 0, np — u, the mean and variance of a
binomial variable should approach those of a Poisson variable. These limits are
np — wand np(1 — p) - u.

PROPOSITION If X has a Poisson distribution with parameter u, then E(X) = V(X) = w.

These results can also be derived directly from the definitions of mean and variance.

Example 3.41 Both the expected number of creatures trapped and the variance of the number
(Example 3.39  trapped equal 4.5, and oy = Vu = V45 = 2.12. |
continued)
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The Poisson Process

A very important application of the Poisson distribution arises in connection with the
occurrence of events of some type over time. Events of interest might be visits to a
particular website, pulses of some sort recorded by a counter, email messages sent
to a particular address, accidents in an industrial facility, or cosmic ray showers
observed by astronomers at a particular observatory. We make the following assump-
tions about the way in which the events of interest occur:

1. There exists a parameter & > 0 such that for any short time interval of length
At, the probability that exactly one event occurs is « + At + o(At)*

2. The probability of more than one event occurring during At is o(At) [which,
along with Assumption 1, implies that the probability of no events during At is
1 — a- At — o(At].

3. The number of events occurring during the time interval At is independent of
the number that occur prior to this time interval.

Informally, Assumption 1 says that for a short interval of time, the probability of a
single event occurring is approximately proportional to the length of the time inter-
val, where « is the constant of proportionality. Now let P,(t) denote the probability
that k events will be observed during any particular time interval of length t.

PROPOSITION P (t) = et (at)¥/k! so that the number of events during a time interval of
length t is a Poisson rv with parameter u = at. The expected number of
events during any such time interval is then at, so the expected number dur-
ing a unit interval of time is «.

The occurrence of events over time as described is called a Poisson process; the
parameter « specifies the rate for the process.

Example 3.42  Suppose pulses arrive at a counter at an average rate of six per minute, so that « = 6.
To find the probability that in a .5-min interval at least one pulse is received, note that
the number of pulses in such an interval has a Poisson distribution with parameter
at = 6(.5) = 3 (.5min is used because « is expressed as a rate per minute). Then with
X = the number of pulses received in the 30-sec interval,

Pl=X)=1-PX=0)=1- = .950 |

Instead of observing events over time, consider observing events of some
type that occur in a two- or three-dimensional region. For example, we might
select on a map a certain region R of a forest, go to that region, and count the num-
ber of trees. Each tree would represent an event occurring at a particular point in
space. Under assumptions similar to 1-3, it can be shown that the number of events
occurring in a region R has a Poisson distribution with parameter « - a(R) where
a(R) is the area of R. The quantity « is the expected number of events per unit area
or volume.

* A quantity is o(At) (read “little o of delta t”) if, as At approaches 0, so does o(At)/At. That is, o(At) is
even more negligible (approaches 0 faster) than At itself. The quantity (At)? has this property, but sin(At)
does not.
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| EXERCISES Section 3.6 (79-93)

79.

80.

81.

82.

83.

84.

Let X, the number of flaws on the surface of a randomly
selected boiler of a certain type, have a Poisson distribution
with parameter u = 5. Use Appendix Table A.2 to compute
the following probabilities:

a. P(X = 8) b. P(X = 8) c. PO =X)

d. PG =X=28) e. P6<X<8)

Let X be the number of material anomalies occurring in a

particular region of an aircraft gas-turbine disk. The article

“Methodology for Probabilistic Life Prediction of Multiple-

Anomaly Materials” (Amer. Inst. of Aeronautics and

Astronautics J., 2006: 787-793) proposes a Poisson distri-

bution for X. Suppose that u = 4.

a. Compute both P(X = 4) and P(X < 4).

b. Compute P(4 = X = 8).

c. Compute P(8 = X).

d. What is the probability that the number of anomalies
exceeds its mean value by no more than one standard
deviation?

Suppose that the number of drivers who travel between a

particular origin and destination during a designated time

period has a Poisson distribution with parameter u = 20

(suggested in the article “Dynamic Ride Sharing: Theory

and Practice,” J. of Transp. Engr., 1997: 308-312). What is

the probability that the number of drivers will

a. Be at most 10?

b. Exceed 20?

c. Be between 10 and 20, inclusive? Be strictly between 10
and 20?

d. Be within 2 standard deviations of the mean value?

Consider writing onto a computer disk and then sending it

through a certifier that counts the number of missing pulses.

Suppose this number X has a Poisson distribution with

parameter u = .2. (Suggested in “Average Sample Number

for Semi-Curtailed Sampling Using the Poisson Distribu-

tion,” J. Quality Technology, 1983: 126-129.)

a. What is the probability that a disk has exactly one miss-
ing pulse?

b. What is the probability that a disk has at least two miss-
ing pulses?

c. Iftwo disks are independently selected, what is the prob-
ability that neither contains a missing pulse?

An article in the Los Angeles Times (Dec. 3, 1993) reports
that 1 in 200 people carry the defective gene that causes
inherited colon cancer. In a sample of 1000 individuals,
what is the approximate distribution of the number who
carry this gene? Use this distribution to calculate the
approximate probability that

a. Between 5 and 8 (inclusive) carry the gene.

b. At least 8 carry the gene.

Suppose that only .10% of all computers of a certain type
experience CPU failure during the warranty period. Con-
sider a sample of 10,000 compulters.

85.

86.

87.

88.

89.

a. What are the expected value and standard deviation of
the number of computers in the sample that have the
defect?

b. What is the (approximate) probability that more than 10
sampled computers have the defect?

c. What is the (approximate) probability that no sampled
computers have the defect?

Suppose small aircraft arrive at a certain airport according

to a Poisson process with rate @ = 8 per hour, so that the

number of arrivals during a time period of t hours is a

Poisson rv with parameter u = 8t.

a. What is the probability that exactly 6 small aircraft arrive
during a 1-hour period? At least 6? At least 10?

b. What are the expected value and standard deviation of
the number of small aircraft that arrive during a 90-min
period?

c. What is the probability that at least 20 small aircraft
arrive during a 2.5-hour period? That at most 10
arrive during this period?

The number of people arriving for treatment at an emer-

gency room can be modeled by a Poisson process with a rate

parameter of five per hour.

a. What is the probability that exactly four arrivals occur
during a particular hour?

b. What is the probability that at least four people arrive
during a particular hour?

c. How many people do you expect to arrive during a 45-
min period?

The number of requests for assistance received by a towing

service is a Poisson process with rate « = 4 per hour.

a. Compute the probability that exactly ten requests are
received during a particular 2-hour period.

b. If the operators of the towing service take a 30-min break
for lunch, what is the probability that they do not miss
any calls for assistance?

c. How many calls would you expect during their break?

In proof testing of circuit boards, the probability that any
particular diode will fail is .01. Suppose a circuit board con-
tains 200 diodes.

a. How many diodes would you expect to fail, and what is
the standard deviation of the number that are expected to
fail?

b. What is the (approximate) probability that at least four
diodes will fail on a randomly selected board?

c. If five boards are shipped to a particular customer, how
likely is it that at least four of them will work properly?
(A board works properly only if all its diodes work.)

The article “Reliability-Based Service-Life Assessment of
Aging Concrete Structures” (J. Structural Engr., 1993:
1600-1621) suggests that a Poisson process can be used to
represent the occurrence of structural loads over time. Suppose
the mean time between occurrences of loads is .5 year.
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90.

91

92.

a. How many loads can be expected to occur during a 2-
year period?

b. What is the probability that more than five loads occur
during a 2-year period?

¢. How long must a time period be so that the probability of
no loads occurring during that period is at most .1?

Let X have a Poisson distribution with parameter . Show that
E(X) = w directly from the definition of expected value.
[Hint: The first term in the sum equals 0, and then x can be can-
celed. Now factor out n and show that what is left sums to 1.]

Suppose that trees are distributed in a forest according to a

two-dimensional Poisson process with parameter «, the

expected number of trees per acre, equal to 80.

a. What is the probability that in a certain quarter-acre plot,
there will be at most 16 trees?

b. If the forest covers 85,000 acres, what is the expected
number of trees in the forest?

¢. Suppose you select a point in the forest and construct a
circle of radius .1 mile. Let X = the number of trees
within that circular region. What is the pmf of X? [Hint:
1sq mile = 640 acres.]

Automobiles arrive at a vehicle equipment inspection sta-
tion according to a Poisson process with rate « = 10 per
hour. Suppose that with probability .5 an arriving vehicle
will have no equipment violations.

93.

Supplementary Exercises 133

a. What is the probability that exactly ten arrive during the
hour and all ten have no violations?

b. Forany fixedy = 10, what is the probability that y arrive
during the hour, of which ten have no violations?

¢. What is the probability that ten “no-violation” cars arrive
during the next hour? [Hint: Sum the probabilities in part
(b) fromy = 10 to «.]

a. InaPoisson process, what has to happen in both the time
interval (0, t) and the interval (t,t + At) so that no
events occur in the entire interval (0, t + At)? Use this
and Assumptions 1-3 to write a relationship between
Po(t + At) and Py(t).

b. Use the result of part (a) to write an expression for the
difference P, (t + At) — B, (t). Then divide by At and let
At — 0 to obtain an equation involving (d/dt)P,(t), the
derivative of Py(t) with respect to t.

c. Verify that Py(t) = et satisfies the equation of part (b).

. It can be shown in a manner similar to parts (a) and (b) that

the R (t)s must satisfy the system of differential equations

o

d
i PO = aR4() — R
k=123,...

Verify that P,(t) = e~ *Y(at)¥/k! satisfies the system. (This
is actually the only solution.)

SUPPLEMENTARY EXERCISES (94-122)

94,

95.

Consider a deck consisting of seven cards, marked 1, 2, . . .,
7. Three of these cards are selected at random. Define an rv
W by W = the sum of the resulting numbers, and compute
the pmf of W. Then compute w and o2, [Hint: Consider out-
comes as unordered, so that (1, 3, 7) and (3, 1, 7) are not
different outcomes. Then there are 35 outcomes, and they
can be listed. (This type of rv actually arises in connection
with a statistical procedure called Wilcoxon’s rank-sum test,
in which there is an x sample and a y sample and W is the
sum of the ranks of the x’s in the combined sample; see
Section 15.2.)

After shuffling a deck of 52 cards, a dealer deals out 5. Let
X = the number of suits represented in the five-card hand.
a. Show that the pmf of X is

X | 1 2 3 4
o) |

.002 .146 .588 .264

[Hint: p(1) = 4P(all are spades), p(2) = 6P(only spades
and hearts with at least one of each suit), and p(4)
= 4P(2 spades M one of each other suit).]

b. Compute u, o?, and o.

96.

97.

98.

The negative binomial rv X was defined as the number of
F’s preceding the rth S. Let Y = the number of trials neces-
sary to obtain the rth S. In the same manner in which the
pmf of X was derived, derive the pmf of Y.

Of all customers purchasing automatic garage-door openers,

75% purchase a chain-driven model. Let X = the number

among the next 15 purchasers who select the chain-driven

model.

a. What is the pmf of X?

. Compute P(X > 10).

Compute P(6 = X = 10).

. Compute u and o2,

. If the store currently has in stock 10 chain-driven models
and 8 shaft-driven models, what is the probability that
the requests of these 15 customers can all be met from
existing stock?

b
c.
d
e

A friend recently planned a camping trip. He had two flash-
lights, one that required a single 6-V battery and another
that used two size-D batteries. He had previously packed
two 6-V and four size-D batteries in his camper. Suppose
the probability that any particular battery works is p and that
batteries work or fail independently of one another. Our
friend wants to take just one flashlight. For what values of p
should he take the 6-V flashlight?
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99.

100.

101.

102.

103.

CHAPTER 3

A k-out-of-n system is one that will function if and only if
at least k of the n individual components in the system
function. If individual components function independently
of one another, each with probability .9, what is the prob-
ability that a 3-out-of-5 system functions?

A manufacturer of integrated circuit chips wishes to con-

trol the quality of its product by rejecting any batch in

which the proportion of defective chips is too high. To this

end, out of each batch (10,000 chips), 25 will be selected

and tested. If at least 5 of these 25 are defective, the entire

batch will be rejected.

a. What is the probability that a batch will be rejected if
5% of the chips in the batch are in fact defective?

b. Answer the question posed in (a) if the percentage of
defective chips in the batch is 10%.

c. Answer the question posed in (a) if the percentage of
defective chips in the batch is 20%.

d. What happens to the probabilities in (a)—(c) if the criti-
cal rejection number is increased from 5 to 67

Of the people passing through an airport metal detector,
.5% activate it; let X = the number among a randomly
selected group of 500 who activate the detector.

a. What is the (approximate) pmf of X?

b. Compute P(X = 5).

c. Compute P(5 = X).

An educational consulting firm is trying to decide whether
high school students who have never before used a hand-
held calculator can solve a certain type of problem more
easily with a calculator that uses reverse Polish logic or
one that does not use this logic. A sample of 25 students is
selected and allowed to practice on both calculators. Then
each student is asked to work one problem on the reverse

Polish calculator and a similar problem on the other. Let

p = P(S), where S indicates that a student worked the

problem more quickly using reverse Polish logic than with-

out, and let X = number of S’s.

a. Ifp= .5 whatis P(7 = X = 18)?

b. If p = .8, whatis P(7 = X = 18)?

c. If the claim that p = .5 is to be rejected when either
X = 7 orx = 18, what is the probability of rejecting the
claim when it is actually correct?

d. If the decision to reject the claim p = .5 is made as in
part (c), what is the probability that the claim is not
rejected when p = .6? When p = .8?

e. What decision rule would you choose for rejecting the
claim p = .5 if you wanted the probability in part (c) to
be at most .01?

Consider a disease whose presence can be identified by
carrying out a blood test. Let p denote the probability that
a randomly selected individual has the disease. Suppose n
individuals are independently selected for testing. One way
to proceed is to carry out a separate test on each of the n
blood samples. A potentially more economical approach,
group testing, was introduced during World War 11 to iden-
tify syphilitic men among army inductees. First, take a part

Discrete Random Variables and Probability Distributions

104.

105.

106.

107.

of each blood sample, combine these specimens, and carry
out a single test. If no one has the disease, the result will be
negative, and only the one test is required. If at least one
individual is diseased, the test on the combined sample will
yield a positive result, in which case the n individual tests
are then carried out. If p = .1 and n = 3, what is the
expected number of tests using this procedure? What is the
expected number when n = 5? [The article “Random
Multiple-Access Communication and Group Testing”
(IEEE Trans. on Commun., 1984: 769-774) applied these
ideas to a communication system in which the dichotomy
was active/idle user rather than diseased/nondiseased.]

Let p, denote the probability that any particular code sym-
bol is erroneously transmitted through a communication
system. Assume that on different symbols, errors occur
independently of one another. Suppose also that with prob-
ability p, an erroneous symbol is corrected upon receipt.
Let X denote the number of correct symbols in a message
block consisting of n symbols (after the correction process
has ended). What is the probability distribution of X?

The purchaser of a power-generating unit requires ¢ con-
secutive successful start-ups before the unit will be
accepted. Assume that the outcomes of individual start-ups
are independent of one another. Let p denote the probabil-
ity that any particular start-up is successful. The random
variable of interest is X = the number of start-ups that
must be made prior to acceptance. Give the pmf of X for
the case ¢ = 2. If p = .9, what is P(X = 8)? [Hint: For
x = 5, express p(x) “recursively” in terms of the pmf eval-
uated at the smaller values x — 3,x — 4,...,2] (This
problem was suggested by the article “Evaluation of a
Start-Up Demonstration Test,” J. Quality Technology,
1983: 103-106.)

A plan for an executive travelers’ club has been developed
by an airline on the premise that 10% of its current cus-
tomers would qualify for membership.

a. Assuming the validity of this premise, among 25 ran-
domly selected current customers, what is the probabil-
ity that between 2 and 6 (inclusive) qualify for
membership?

b. Again assuming the validity of the premise, what are
the expected number of customers who qualify and the
standard deviation of the number who qualify in a ran-
dom sample of 100 current customers?

c. Let X denote the number in a random sample of 25 cur-
rent customers who qualify for membership. Consider
rejecting the company’s premise in favor of the claim
that p > .10 if x = 7. What is the probability that the
company’s premise is rejected when it is actually valid?

d. Refer to the decision rule introduced in part (c). What is
the probability that the company’s premise is not
rejected even though p = .20 (i.e., 20% qualify)?

Forty percent of seeds from maize (modern-day corn) ears
carry single spikelets, and the other 60% carry paired
spikelets. A seed with single spikelets will produce an ear
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100.

110.

111.

112.

113.

with single spikelets 29% of the time, whereas a seed with

paired spikelets will produce an ear with single spikelets

26% of the time. Consider randomly selecting ten seeds.

a. What is the probability that exactly five of these seeds
carry a single spikelet and produce an ear with a single
spikelet?

b. What is the probability that exactly five of the ears pro-
duced by these seeds have single spikelets? What is the
probability that at most five ears have single spikelets?

A trial has just resulted in a hung jury because eight mem-
bers of the jury were in favor of a guilty verdict and the
other four were for acquittal. If the jurors leave the jury
room in random order and each of the first four leaving the
room is accosted by a reporter in quest of an interview,
what is the pmf of X = the number of jurors favoring
acquittal among those interviewed? How many of those
favoring acquittal do you expect to be interviewed?

A reservation service employs five information operators

who receive requests for information independently of one

another, each according to a Poisson process with rate

a = 2 per minute.

a. What is the probability that during a given 1-min
period, the first operator receives no requests?

b. What is the probability that during a given 1-min
period, exactly four of the five operators receive no
requests?

c. Write an expression for the probability that during a
given 1-min period, all of the operators receive exactly
the same number of requests.

Grasshoppers are distributed at random in a large field
according to a Poisson process with parameter « = 2 per
square yard. How large should the radius R of a circular
sampling region be taken so that the probability of finding
at least one in the region equals .99?

A newsstand has ordered five copies of a certain issue of a
photography magazine. Let X = the number of individuals
who come in to purchase this magazine. If X has a Poisson
distribution with parameter u = 4, what is the expected
number of copies that are sold?

Individuals A and B begin to play a sequence of chess
games. Let S = {A wins a game}, and suppose that out-
comes of successive games are independent with P(S) = p
and P(F) = 1 — p (they never draw). They will play until
one of them wins ten games. Let X = the number of
games played (with possible values 10, 11, . . ., 19).

a. For x = 10,11, ...,19, obtain an expression for
p(x) = P(X = x).

b. If a draw is possible, with p = P(S), q = P(F),
1 — p — q = P(draw), what are the possible values
of X? What is P(20 = X)? [Hint: P20 = X) =
1 - P(X < 20).]

A test for the presence of a certain disease has probability

.20 of giving a false-positive reading (indicating that an
individual has the disease when this is not the case) and
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probability .10 of giving a false-negative result. Suppose

that ten individuals are tested, five of whom have the dis-

ease and five of whom do not. Let X = the number of pos-

itive readings that result.

a. Does X have a binomial distribution? Explain your rea-
soning.

b. What is the probability that exactly three of the ten test
results are positive?

The generalized negative binomial pmf is given by

nb(x; r, p) = k(r,x) - p'(XL — p)*
Xx=012...

Let X, the number of plants of a certain species found in a
particular region, have this distribution with p = .3 and
r = 2.5. What is P(X = 4)? What is the probability that at
least one plant is found?

There are two Certified Public Accountants in a particular
office who prepare tax returns for clients. Suppose that for
a particular type of complex form, the number of errors
made by the first preparer has a Poisson distribution with
mean value w,, the number of errors made by the second
preparer has a Poisson distribution with mean value wu,,
and that each CPA prepares the same number of forms of
this type. Then if a form of this type is randomly selected,
the function

e | e

» o x=012...

POX; py, pp) = .5

gives the pmf of X = the number of errors on the selected

form.

a. Verify that p(X; u,, u,) is in fact a legitimate pmf (= 0
and sums to 1).

b. What is the expected number of errors on the selected
form?

¢. What is the variance of the number of errors on the
selected form?

d. How does the pmf change if the first CPA prepares 60%
of all such forms and the second prepares 40%?

The mode of a discrete random variable X with pmf p(x) is
that value x* for which p(x) is largest (the most probable
x value).

a. Let X ~ Bin(n, p). By considering the ratio b(x + 1; n,
p)/b(x; n, p), show that b(x; n, p) increases with x as long
asx < np — (1 — p). Conclude that the mode x* is the
integer satisfying (n + 1)p — 1 = x* = (n + 1)p.

b. Show that if X has a Poisson distribution with parame-
ter w, the mode is the largest integer less than w. If w is
an integer, show that both u — 1 and w are modes.

A computer disk storage device has ten concentric tracks,
numbered 1, 2, . . ., 10 from outermost to innermost, and a
single access arm. Let p; = the probability that any particu-
lar request for data will take the arm to track
i(i = 1,...,10). Assume that the tracks accessed in suc-
cessive seeks are independent. Let X = the number of
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tracks over which the access arm passes during two succes-
sive requests (excluding the track that the arm has just left,
so possible X values are x = 0,1, ...,9). Compute the
pmf of X. [Hint: P(the arm is now on track i and X = j) =

P(X = jlarm now on i) - p; After the conditional probability
is written in terms of p,, . . ., py,, by the law of total proba-
bility, the desired probability is obtained by summing over i.]

If X is a hypergeometric rv, show directly from the defini-
tion that E(X) = nM/N (consider only the case n < M).
[Hint: Factor nM/N out of the sum for E(X), and show
that the terms inside the sum are of the form
hy;n —1,M — 1,N — 1), wherey = x — 1]

Use the fact that

2 - wp) = X

all x X: | X—u|=ko

(x = w)?pK)

to prove Chebyshev’s inequality given in Exercise 44.

The simple Poisson process of Section 3.6 is characterized
by a constant rate « at which events occur per unit time. A
generalization of this is to suppose that the probability of
exactly one event occurring in the interval [t, t + At] is
a(t) « At + o(At). It can then be shown that the number of
events occurring during an interval [t;, t,] has a Poisson
distribution with parameter

t.
o= j ‘a(t) dt

t2
The occurrence of events over time in this situation is
called a nonhomogeneous Poisson process. The article
“Inference Based on Retrospective Ascertainment,” J.
Amer. Stat. Assoc., 1989: 360-372, considers the intensity
function

at) = gatht

as appropriate for events involving transmission of HIV
(the AIDS virus) via blood transfusions. Suppose that
a = 2and b = .6 (close to values suggested in the paper),
with time in years.
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a. What is the expected number of events in the interval
[0, 417 In [2, 6]?

b. What is the probability that at most 15 events occur in
the interval [0, .9907]?

Consider a collection A,, . . ., A, of mutually exclusive and

exhaustive events, and a random variable X whose distri-

bution depends on which of the A;’s occurs (e.g., a com-
muter might select one of three possible routes from home
to work, with X representing the commute time). Let

E(X| A;) denote the expected value of X given that the event

A, occurs. Then it can be shown that

E(X) = SE(X|A) - P(A)) the weighted average of the indi-

vidual “conditional expectations” where the weights are

the probabilities of the partitioning events.

a. The expected duration of a voice call to a particular
telephone number is 3 minutes, whereas the expected
duration of a data call to that same number is 1 minute.
If 75% of all calls are voice calls, what is the expected
duration of the next call?

b. A deli sells three different types of chocolate chip cook-
ies. The number of chocolate chips in a type i cookie
has a Poisson distribution with parameter
w=1i+1 (i=1,23).If20% of all customers pur-
chasing a chocolate chip cookie select the first type,
50% choose the second type, and the remaining 30%
opt for the third type, what is the expected number of
chips in a cookie purchased by the next customer?

Consider a communication source that transmits packets
containing digitized speech. After each transmission, the
receiver sends a message indicating whether the transmis-
sion was successful or unsuccessful. If a transmission is
unsuccessful, the packet is re-sent. Suppose a voice packet
can be transmitted a maximum of 10 times. Assuming that
the results of successive transmissions are independent of
one another and that the probability of any particular trans-
mission being successful is p, determine the probability
mass function of the rv X = the number of times a packet
is transmitted. Then obtain an expression for the expected
number of times a packet is transmitted.

properties of discrete and continuous distributions and results
for specific distributions.

Ross, Sheldon, Introduction to Probability Models (9th ed.),
Academic Press, New York, 2007. A good source of material
on the Poisson process and generalizations and a nice intro-
duction to other topics in applied probability.
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4 Continuous Random
Variables and Probability
Distributions

I INTRODUCTION

Chapter 3 concentrated on the development of probability distributions for dis-
crete random variables. In this chapter, we consider the second general type of
random variable that arises in many applied problems. Sections 4.1 and 4.2
present the basic definitions and properties of continuous random variables and
their probability distributions. In Section 4.3, we study in detail the normal ran-
dom variable and distribution, unquestionably the most important and useful in
probability and statistics. Sections 4.4 and 4.5 discuss some other continuous
distributions that are often used in applied work. In Section 4.6, we introduce
a method for assessing whether given sample data is consistent with a specified
distribution.
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138 CHAPTER 4  Continuous Random Variables and Probability Distributions

I 4.1 Probability Density Functions

A discrete random variable (rv) is one whose possible values either constitute a finite
set or else can be listed in an infinite sequence (a list in which there is a first element,
a second element, etc.). A random variable whose set of possible values is an entire
interval of numbers is not discrete.

Recall from Chapter 3 that a random variable X is continuous if (1) possible
values comprise either a single interval on the number line (for some A < B, any
number x between A and B is a possible value) or a union of disjoint intervals, and
(2) P(X = ¢) = 0 for any number c that is a possible value of X.

Example 4.1 If in the study of the ecology of a lake, we make depth measurements at randomly
chosen locations, then X = the depth at such a location is a continuous rv. Here A is
the minimum depth in the region being sampled, and B is the maximum depth.

Example 4.2 If a chemical compound is randomly selected and its pH X is determined, then X is
a continuous rv because any pH value between 0 and 14 is possible. If more is known
about the compound selected for analysis, then the set of possible values might be a
subinterval of [0, 14], such as 5.5 = x = 6.5, but X would still be continuous. ™

Example 4.3  Let X represent the amount of time a randomly selected customer spends waiting for
a haircut before his/her haircut commences. Your first thought might be that X is a
continuous random variable, since a measurement is required to determine its value.
However, there are customers lucky enough to have no wait whatsoever before
climbing into the barber’s chair. So it must be the case that P(X = 0) > 0.
Conditional on no chairs being empty, though, the waiting time will be continuous
since X could then assume any value between some minimum possible time A and a
maximum possible time B. This random variable is neither purely discrete nor purely
continuous but instead is a mixture of the two types. [ |

One might argue that although in principle variables such as height, weight,
and temperature are continuous, in practice the limitations of our measuring instru-
ments restrict us to a discrete (though sometimes very finely subdivided) world.
However, continuous models often approximate real-world situations very well, and
continuous mathematics (the calculus) is frequently easier to work with than math-
ematics of discrete variables and distributions.

Probability Distributions for Continuous Variables

Suppose the variable X of interest is the depth of a lake at a randomly chosen point
on the surface. Let M = the maximum depth (in meters), so that any number in the
interval [0, M] is a possible value of X. If we “discretize” X by measuring depth to
the nearest meter, then possible values are nonnegative integers less than or equal to
M. The resulting discrete distribution of depth can be pictured using a probability his-
togram. If we draw the histogram so that the area of the rectangle above any possible
integer k is the proportion of the lake whose depth is (to the nearest meter) k, then the
total area of all rectangles is 1. A possible histogram appears in Figure 4.1(a).

If depth is measured much more accurately and the same measurement axis as
in Figure 4.1(a) is used, each rectangle in the resulting probability histogram is much
narrower, though the total area of all rectangles is still 1. A possible histogram is
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4.1 Probability Density Functions 139

pictured in Figure 4.1(b); it has a much smoother appearance than the histogram in
Figure 4.1(a). If we continue in this way to measure depth more and more finely, the
resulting sequence of histograms approaches a smooth curve, such as is pictured in
Figure 4.1(c). Because for each histogram the total area of all rectangles equals 1,
the total area under the smooth curve is also 1. The probability that the depth at a
randomly chosen point is between a and b is just the area under the smooth curve
between a and b. It is exactly a smooth curve of the type pictured in Figure 4.1(c)

that specifies a continuous probability distribution.
' M

0 M 0 M 0
@ (b) ©

Figure 4.1 (a) Probability histogram of depth measured to the nearest meter; (b) probability
histogram of depth measured to the nearest centimeter; (c) a limit of a sequence of discrete
histograms

DEFINITION Let X be a continuous rv. Then a probability distribution or probability den-
sity function (pdf) of X is a function f(x) such that for any two numbers a and
b witha = b,

b

P@a=X=bh) = j f(x)dx

a
That is, the probability that X takes on a value in the interval [a, b] is the area
above this interval and under the graph of the density function, as illustrated
in Figure 4.2. The graph of f(x) is often referred to as the density curve.

(%)

a b
Figure 4.2 P(a = X = b) = the area under the density curve between a and b
For f(x) to be a legitimate pdf, it must satisfy the following two conditions:
1. f(x) = 0 for all x
2. J f(x)dx = area under the entire graph of f(x)
e .

Example 4.4  The direction of an imperfection with respect to a reference line on a circular object
such as a tire, brake rotor, or flywheel is, in general, subject to uncertainty. Consider
the reference line connecting the valve stem on a tire to the center point, and let X
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140 CHAPTER 4  Continuous Random Variables and Probability Distributions

be the angle measured clockwise to the location of an imperfection. One possible
pdf for X is

1
— 0=x<360
f(x) = < 360
0 otherwise

The pdf is graphed in Figure 4.3. Clearly f(x) = 0. The area under the density curve

is just the area of a rectangle: (height)(base) = (i)(360) = 1. The probability that

360
the angle is between 90° and 180° is
180 X

. 360 ™ 360
The probability that the angle of occurrence is within 90° of the reference line is
PO =X =090) + P(270 = X < 360) = .25 + .25 = .50

x=180 1
=—-=.25

dx
x=90 4

P(90 = X = 180) = J

f(x) f(x)
Shaded area = P(90 = X =180)
L
%0 B
l l
| I
1 X f i 1 T X
0 360 90 180 270 360
Figure 4.3 The pdf and probability from Example 4.4 [ |

Because whenever 0 < a < b = 360 in Example 4.4 and P(a = X =< b) depends
only on the width b — a of the interval, X is said to have a uniform distribution.

DEFINITION A continuous rv X is said to have a uniform distribution on the interval
[A, B] if the pdf of X is

1
— A=Xx=B
f(;A,B)=¢B — A

0 otherwise

The graph of any uniform pdf loo